L(s) = 1 | + (−0.793 − 1.53i)3-s + (0.671 + 1.16i)5-s + (2.29 − 3.98i)7-s + (−1.74 + 2.44i)9-s + (0.873 − 1.51i)11-s + (−0.5 − 0.866i)13-s + (1.25 − 1.95i)15-s + 0.936·17-s + 1.28·19-s + (−7.95 − 0.378i)21-s + (0.711 + 1.23i)23-s + (1.59 − 2.76i)25-s + (5.14 + 0.739i)27-s + (−1.89 + 3.28i)29-s + (−3.71 − 6.43i)31-s + ⋯ |
L(s) = 1 | + (−0.458 − 0.888i)3-s + (0.300 + 0.520i)5-s + (0.869 − 1.50i)7-s + (−0.580 + 0.814i)9-s + (0.263 − 0.456i)11-s + (−0.138 − 0.240i)13-s + (0.324 − 0.505i)15-s + 0.227·17-s + 0.295·19-s + (−1.73 − 0.0826i)21-s + (0.148 + 0.256i)23-s + (0.319 − 0.553i)25-s + (0.989 + 0.142i)27-s + (−0.352 + 0.610i)29-s + (−0.667 − 1.15i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.869330 - 1.14222i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.869330 - 1.14222i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.793 + 1.53i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
good | 5 | \( 1 + (-0.671 - 1.16i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-2.29 + 3.98i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.873 + 1.51i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 0.936T + 17T^{2} \) |
| 19 | \( 1 - 1.28T + 19T^{2} \) |
| 23 | \( 1 + (-0.711 - 1.23i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.89 - 3.28i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.71 + 6.43i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 3.81T + 37T^{2} \) |
| 41 | \( 1 + (4.63 + 8.02i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.09 - 1.89i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.13 - 1.96i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 3.11T + 53T^{2} \) |
| 59 | \( 1 + (-0.361 - 0.626i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.607 + 1.05i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.54 + 4.40i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 4.34T + 71T^{2} \) |
| 73 | \( 1 + 15.9T + 73T^{2} \) |
| 79 | \( 1 + (-4.70 + 8.15i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.04 + 8.74i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 16.6T + 89T^{2} \) |
| 97 | \( 1 + (4.56 - 7.90i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13886214156580131051411916565, −8.837486954964441517504388064387, −7.75022050713866490950328413979, −7.38166133023084474158441925877, −6.50390644520274978060753912758, −5.58866053658057178717224899887, −4.56446253269558715513320656143, −3.35259962327964497239861808323, −1.91854730772275985281308253331, −0.75813660728091640594898891803,
1.61178769264283595394519327053, 2.94032196507401585094190844429, 4.33422600612281086517198280007, 5.17638242265693078434738438899, 5.60506027791632978653446951859, 6.70527781620013711256388974865, 8.051622403352503330430740677507, 8.928708904448290596754249316349, 9.314498265239257353094625307415, 10.21842068630486917504941353522