L(s) = 1 | + (−0.793 − 1.53i)3-s + (0.671 + 1.16i)5-s + (2.29 − 3.98i)7-s + (−1.74 + 2.44i)9-s + (0.873 − 1.51i)11-s + (−0.5 − 0.866i)13-s + (1.25 − 1.95i)15-s + 0.936·17-s + 1.28·19-s + (−7.95 − 0.378i)21-s + (0.711 + 1.23i)23-s + (1.59 − 2.76i)25-s + (5.14 + 0.739i)27-s + (−1.89 + 3.28i)29-s + (−3.71 − 6.43i)31-s + ⋯ |
L(s) = 1 | + (−0.458 − 0.888i)3-s + (0.300 + 0.520i)5-s + (0.869 − 1.50i)7-s + (−0.580 + 0.814i)9-s + (0.263 − 0.456i)11-s + (−0.138 − 0.240i)13-s + (0.324 − 0.505i)15-s + 0.227·17-s + 0.295·19-s + (−1.73 − 0.0826i)21-s + (0.148 + 0.256i)23-s + (0.319 − 0.553i)25-s + (0.989 + 0.142i)27-s + (−0.352 + 0.610i)29-s + (−0.667 − 1.15i)31-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(−0.266+0.963i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(−0.266+0.963i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
−0.266+0.963i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(313,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), −0.266+0.963i)
|
Particular Values
L(1) |
≈ |
0.869330−1.14222i |
L(21) |
≈ |
0.869330−1.14222i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.793+1.53i)T |
| 13 | 1+(0.5+0.866i)T |
good | 5 | 1+(−0.671−1.16i)T+(−2.5+4.33i)T2 |
| 7 | 1+(−2.29+3.98i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−0.873+1.51i)T+(−5.5−9.52i)T2 |
| 17 | 1−0.936T+17T2 |
| 19 | 1−1.28T+19T2 |
| 23 | 1+(−0.711−1.23i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.89−3.28i)T+(−14.5−25.1i)T2 |
| 31 | 1+(3.71+6.43i)T+(−15.5+26.8i)T2 |
| 37 | 1−3.81T+37T2 |
| 41 | 1+(4.63+8.02i)T+(−20.5+35.5i)T2 |
| 43 | 1+(1.09−1.89i)T+(−21.5−37.2i)T2 |
| 47 | 1+(1.13−1.96i)T+(−23.5−40.7i)T2 |
| 53 | 1−3.11T+53T2 |
| 59 | 1+(−0.361−0.626i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−0.607+1.05i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.54+4.40i)T+(−33.5+58.0i)T2 |
| 71 | 1+4.34T+71T2 |
| 73 | 1+15.9T+73T2 |
| 79 | 1+(−4.70+8.15i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−5.04+8.74i)T+(−41.5−71.8i)T2 |
| 89 | 1−16.6T+89T2 |
| 97 | 1+(4.56−7.90i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.13886214156580131051411916565, −8.837486954964441517504388064387, −7.75022050713866490950328413979, −7.38166133023084474158441925877, −6.50390644520274978060753912758, −5.58866053658057178717224899887, −4.56446253269558715513320656143, −3.35259962327964497239861808323, −1.91854730772275985281308253331, −0.75813660728091640594898891803,
1.61178769264283595394519327053, 2.94032196507401585094190844429, 4.33422600612281086517198280007, 5.17638242265693078434738438899, 5.60506027791632978653446951859, 6.70527781620013711256388974865, 8.051622403352503330430740677507, 8.928708904448290596754249316349, 9.314498265239257353094625307415, 10.21842068630486917504941353522