L(s) = 1 | + 1.41i·2-s − 2.00·4-s + (2.82 − 2.82i)5-s + (1 + i)7-s − 2.82i·8-s + (4.00 + 4.00i)10-s + (−1.41 + 1.41i)11-s + (−2 − 3i)13-s + (−1.41 + 1.41i)14-s + 4.00·16-s + 2.82i·17-s + (1 + i)19-s + (−5.65 + 5.65i)20-s + (−2.00 − 2.00i)22-s + 8.48·23-s + ⋯ |
L(s) = 1 | + 0.999i·2-s − 1.00·4-s + (1.26 − 1.26i)5-s + (0.377 + 0.377i)7-s − 1.00i·8-s + (1.26 + 1.26i)10-s + (−0.426 + 0.426i)11-s + (−0.554 − 0.832i)13-s + (−0.377 + 0.377i)14-s + 1.00·16-s + 0.685i·17-s + (0.229 + 0.229i)19-s + (−1.26 + 1.26i)20-s + (−0.426 − 0.426i)22-s + 1.76·23-s + ⋯ |
Λ(s)=(=(936s/2ΓC(s)L(s)(0.957−0.289i)Λ(2−s)
Λ(s)=(=(936s/2ΓC(s+1/2)L(s)(0.957−0.289i)Λ(1−s)
Degree: |
2 |
Conductor: |
936
= 23⋅32⋅13
|
Sign: |
0.957−0.289i
|
Analytic conductor: |
7.47399 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ936(307,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 936, ( :1/2), 0.957−0.289i)
|
Particular Values
L(1) |
≈ |
1.77050+0.262156i |
L(21) |
≈ |
1.77050+0.262156i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−1.41iT |
| 3 | 1 |
| 13 | 1+(2+3i)T |
good | 5 | 1+(−2.82+2.82i)T−5iT2 |
| 7 | 1+(−1−i)T+7iT2 |
| 11 | 1+(1.41−1.41i)T−11iT2 |
| 17 | 1−2.82iT−17T2 |
| 19 | 1+(−1−i)T+19iT2 |
| 23 | 1−8.48T+23T2 |
| 29 | 1+5.65iT−29T2 |
| 31 | 1+(−7+7i)T−31iT2 |
| 37 | 1+(5+5i)T+37iT2 |
| 41 | 1+(−5.65−5.65i)T+41iT2 |
| 43 | 1−43T2 |
| 47 | 1+(−1.41−1.41i)T+47iT2 |
| 53 | 1−2.82iT−53T2 |
| 59 | 1+(−7.07+7.07i)T−59iT2 |
| 61 | 1−6iT−61T2 |
| 67 | 1+(5+5i)T+67iT2 |
| 71 | 1+(9.89−9.89i)T−71iT2 |
| 73 | 1+(−7+7i)T−73iT2 |
| 79 | 1−6iT−79T2 |
| 83 | 1+(−9.89−9.89i)T+83iT2 |
| 89 | 1+(5.65−5.65i)T−89iT2 |
| 97 | 1+(−7−7i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.741516045703113180368052515879, −9.232557814808922384557791634634, −8.338447891430995512343439930492, −7.76331172524009456748299329849, −6.51168360143296946647637526215, −5.57609611317133313243438715147, −5.18649958556252205421469421587, −4.30622387659338216239599060642, −2.47145196150940810174359892889, −0.983196778336549892171486708245,
1.39910866146924081190762187500, 2.62707875287820081402961017309, 3.18179771749013310355984119111, 4.73945756716262267737653541427, 5.43136609808578778282734053478, 6.70072958320491420971095955299, 7.33279664106045445229271615226, 8.758204894563282903989929770427, 9.379467489961929225985018161623, 10.28063955721383013746549356219