Properties

Label 936.2.w.e
Level 936936
Weight 22
Character orbit 936.w
Analytic conductor 7.4747.474
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(307,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 936=233213 936 = 2^{3} \cdot 3^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 936.w (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.473997629197.47399762919
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ2q22q4+(2β3+2β2)q5+(β1+1)q7+2β2q8+(4β1+4)q10+(β3β2)q11+(3β12)q13+(β3β2)q14++5β3q98+O(q100) q - \beta_{2} q^{2} - 2 q^{4} + (2 \beta_{3} + 2 \beta_{2}) q^{5} + ( - \beta_1 + 1) q^{7} + 2 \beta_{2} q^{8} + ( - 4 \beta_1 + 4) q^{10} + ( - \beta_{3} - \beta_{2}) q^{11} + (3 \beta_1 - 2) q^{13} + ( - \beta_{3} - \beta_{2}) q^{14}+ \cdots + 5 \beta_{3} q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q4+4q7+16q108q13+16q16+4q198q228q28+28q3116q3420q3732q40+16q52+32q5832q6420q67+28q738q76++28q97+O(q100) 4 q - 8 q^{4} + 4 q^{7} + 16 q^{10} - 8 q^{13} + 16 q^{16} + 4 q^{19} - 8 q^{22} - 8 q^{28} + 28 q^{31} - 16 q^{34} - 20 q^{37} - 32 q^{40} + 16 q^{52} + 32 q^{58} - 32 q^{64} - 20 q^{67} + 28 q^{73} - 8 q^{76}+ \cdots + 28 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ82 \zeta_{8}^{2} Copy content Toggle raw display
β2\beta_{2}== ζ83+ζ8 \zeta_{8}^{3} + \zeta_{8} Copy content Toggle raw display
β3\beta_{3}== ζ83+ζ8 -\zeta_{8}^{3} + \zeta_{8} Copy content Toggle raw display
ζ8\zeta_{8}== (β3+β2)/2 ( \beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display
ζ82\zeta_{8}^{2}== β1 \beta_1 Copy content Toggle raw display
ζ83\zeta_{8}^{3}== (β3+β2)/2 ( -\beta_{3} + \beta_{2} ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/936Z)×\left(\mathbb{Z}/936\mathbb{Z}\right)^\times.

nn 145145 209209 469469 703703
χ(n)\chi(n) β1-\beta_{1} 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
307.1
−0.707107 + 0.707107i
0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 0.707107i
1.41421i 0 −2.00000 −2.82843 + 2.82843i 0 1.00000 + 1.00000i 2.82843i 0 4.00000 + 4.00000i
307.2 1.41421i 0 −2.00000 2.82843 2.82843i 0 1.00000 + 1.00000i 2.82843i 0 4.00000 + 4.00000i
811.1 1.41421i 0 −2.00000 2.82843 + 2.82843i 0 1.00000 1.00000i 2.82843i 0 4.00000 4.00000i
811.2 1.41421i 0 −2.00000 −2.82843 2.82843i 0 1.00000 1.00000i 2.82843i 0 4.00000 4.00000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
104.m even 4 1 inner
312.w odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.2.w.e 4
3.b odd 2 1 inner 936.2.w.e 4
8.d odd 2 1 936.2.w.f yes 4
13.d odd 4 1 936.2.w.f yes 4
24.f even 2 1 936.2.w.f yes 4
39.f even 4 1 936.2.w.f yes 4
104.m even 4 1 inner 936.2.w.e 4
312.w odd 4 1 inner 936.2.w.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
936.2.w.e 4 1.a even 1 1 trivial
936.2.w.e 4 3.b odd 2 1 inner
936.2.w.e 4 104.m even 4 1 inner
936.2.w.e 4 312.w odd 4 1 inner
936.2.w.f yes 4 8.d odd 2 1
936.2.w.f yes 4 13.d odd 4 1
936.2.w.f yes 4 24.f even 2 1
936.2.w.f yes 4 39.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(936,[χ])S_{2}^{\mathrm{new}}(936, [\chi]):

T54+256 T_{5}^{4} + 256 Copy content Toggle raw display
T722T7+2 T_{7}^{2} - 2T_{7} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4+256 T^{4} + 256 Copy content Toggle raw display
77 (T22T+2)2 (T^{2} - 2 T + 2)^{2} Copy content Toggle raw display
1111 T4+16 T^{4} + 16 Copy content Toggle raw display
1313 (T2+4T+13)2 (T^{2} + 4 T + 13)^{2} Copy content Toggle raw display
1717 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
1919 (T22T+2)2 (T^{2} - 2 T + 2)^{2} Copy content Toggle raw display
2323 (T272)2 (T^{2} - 72)^{2} Copy content Toggle raw display
2929 (T2+32)2 (T^{2} + 32)^{2} Copy content Toggle raw display
3131 (T214T+98)2 (T^{2} - 14 T + 98)^{2} Copy content Toggle raw display
3737 (T2+10T+50)2 (T^{2} + 10 T + 50)^{2} Copy content Toggle raw display
4141 T4+4096 T^{4} + 4096 Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4+16 T^{4} + 16 Copy content Toggle raw display
5353 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
5959 T4+10000 T^{4} + 10000 Copy content Toggle raw display
6161 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
6767 (T2+10T+50)2 (T^{2} + 10 T + 50)^{2} Copy content Toggle raw display
7171 T4+38416 T^{4} + 38416 Copy content Toggle raw display
7373 (T214T+98)2 (T^{2} - 14 T + 98)^{2} Copy content Toggle raw display
7979 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
8383 T4+38416 T^{4} + 38416 Copy content Toggle raw display
8989 T4+4096 T^{4} + 4096 Copy content Toggle raw display
9797 (T214T+98)2 (T^{2} - 14 T + 98)^{2} Copy content Toggle raw display
show more
show less