Properties

Label 936.2.w.e
Level $936$
Weight $2$
Character orbit 936.w
Analytic conductor $7.474$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(307,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.w (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - 2 q^{4} + (2 \beta_{3} + 2 \beta_{2}) q^{5} + ( - \beta_1 + 1) q^{7} + 2 \beta_{2} q^{8} + ( - 4 \beta_1 + 4) q^{10} + ( - \beta_{3} - \beta_{2}) q^{11} + (3 \beta_1 - 2) q^{13} + ( - \beta_{3} - \beta_{2}) q^{14}+ \cdots + 5 \beta_{3} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + 4 q^{7} + 16 q^{10} - 8 q^{13} + 16 q^{16} + 4 q^{19} - 8 q^{22} - 8 q^{28} + 28 q^{31} - 16 q^{34} - 20 q^{37} - 32 q^{40} + 16 q^{52} + 32 q^{58} - 32 q^{64} - 20 q^{67} + 28 q^{73} - 8 q^{76}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{8}^{3} + \zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{8}^{3} + \zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-\beta_{1}\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
307.1
−0.707107 + 0.707107i
0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 0.707107i
1.41421i 0 −2.00000 −2.82843 + 2.82843i 0 1.00000 + 1.00000i 2.82843i 0 4.00000 + 4.00000i
307.2 1.41421i 0 −2.00000 2.82843 2.82843i 0 1.00000 + 1.00000i 2.82843i 0 4.00000 + 4.00000i
811.1 1.41421i 0 −2.00000 2.82843 + 2.82843i 0 1.00000 1.00000i 2.82843i 0 4.00000 4.00000i
811.2 1.41421i 0 −2.00000 −2.82843 2.82843i 0 1.00000 1.00000i 2.82843i 0 4.00000 4.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
104.m even 4 1 inner
312.w odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.2.w.e 4
3.b odd 2 1 inner 936.2.w.e 4
8.d odd 2 1 936.2.w.f yes 4
13.d odd 4 1 936.2.w.f yes 4
24.f even 2 1 936.2.w.f yes 4
39.f even 4 1 936.2.w.f yes 4
104.m even 4 1 inner 936.2.w.e 4
312.w odd 4 1 inner 936.2.w.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
936.2.w.e 4 1.a even 1 1 trivial
936.2.w.e 4 3.b odd 2 1 inner
936.2.w.e 4 104.m even 4 1 inner
936.2.w.e 4 312.w odd 4 1 inner
936.2.w.f yes 4 8.d odd 2 1
936.2.w.f yes 4 13.d odd 4 1
936.2.w.f yes 4 24.f even 2 1
936.2.w.f yes 4 39.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(936, [\chi])\):

\( T_{5}^{4} + 256 \) Copy content Toggle raw display
\( T_{7}^{2} - 2T_{7} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 256 \) Copy content Toggle raw display
$7$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 16 \) Copy content Toggle raw display
$13$ \( (T^{2} + 4 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 14 T + 98)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 10 T + 50)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 4096 \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 16 \) Copy content Toggle raw display
$53$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 10000 \) Copy content Toggle raw display
$61$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 10 T + 50)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 38416 \) Copy content Toggle raw display
$73$ \( (T^{2} - 14 T + 98)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 38416 \) Copy content Toggle raw display
$89$ \( T^{4} + 4096 \) Copy content Toggle raw display
$97$ \( (T^{2} - 14 T + 98)^{2} \) Copy content Toggle raw display
show more
show less