Properties

Label 2-936-1.1-c3-0-35
Degree $2$
Conductor $936$
Sign $-1$
Analytic cond. $55.2257$
Root an. cond. $7.43140$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·5-s − 21·7-s − 6·11-s + 13·13-s + 115·17-s − 46·19-s − 144·23-s − 76·25-s + 162·29-s + 180·31-s − 147·35-s + 13·37-s − 192·41-s − 33·43-s − 383·47-s + 98·49-s − 288·53-s − 42·55-s − 442·59-s − 680·61-s + 91·65-s − 722·67-s + 207·71-s + 274·73-s + 126·77-s − 936·79-s + 1.20e3·83-s + ⋯
L(s)  = 1  + 0.626·5-s − 1.13·7-s − 0.164·11-s + 0.277·13-s + 1.64·17-s − 0.555·19-s − 1.30·23-s − 0.607·25-s + 1.03·29-s + 1.04·31-s − 0.709·35-s + 0.0577·37-s − 0.731·41-s − 0.117·43-s − 1.18·47-s + 2/7·49-s − 0.746·53-s − 0.102·55-s − 0.975·59-s − 1.42·61-s + 0.173·65-s − 1.31·67-s + 0.346·71-s + 0.439·73-s + 0.186·77-s − 1.33·79-s + 1.59·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(936\)    =    \(2^{3} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(55.2257\)
Root analytic conductor: \(7.43140\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 936,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - p T \)
good5 \( 1 - 7 T + p^{3} T^{2} \)
7 \( 1 + 3 p T + p^{3} T^{2} \)
11 \( 1 + 6 T + p^{3} T^{2} \)
17 \( 1 - 115 T + p^{3} T^{2} \)
19 \( 1 + 46 T + p^{3} T^{2} \)
23 \( 1 + 144 T + p^{3} T^{2} \)
29 \( 1 - 162 T + p^{3} T^{2} \)
31 \( 1 - 180 T + p^{3} T^{2} \)
37 \( 1 - 13 T + p^{3} T^{2} \)
41 \( 1 + 192 T + p^{3} T^{2} \)
43 \( 1 + 33 T + p^{3} T^{2} \)
47 \( 1 + 383 T + p^{3} T^{2} \)
53 \( 1 + 288 T + p^{3} T^{2} \)
59 \( 1 + 442 T + p^{3} T^{2} \)
61 \( 1 + 680 T + p^{3} T^{2} \)
67 \( 1 + 722 T + p^{3} T^{2} \)
71 \( 1 - 207 T + p^{3} T^{2} \)
73 \( 1 - 274 T + p^{3} T^{2} \)
79 \( 1 + 936 T + p^{3} T^{2} \)
83 \( 1 - 1204 T + p^{3} T^{2} \)
89 \( 1 - 966 T + p^{3} T^{2} \)
97 \( 1 + 138 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.548889311420418277493236959645, −8.386158252367839025477068558225, −7.64736570619234577189786973290, −6.29450302481893694352509617175, −6.13005931620180943039094551304, −4.89990356564291798349602829763, −3.65144629439520133174915207607, −2.80053279352450176990017830937, −1.48210673471517056331740968285, 0, 1.48210673471517056331740968285, 2.80053279352450176990017830937, 3.65144629439520133174915207607, 4.89990356564291798349602829763, 6.13005931620180943039094551304, 6.29450302481893694352509617175, 7.64736570619234577189786973290, 8.386158252367839025477068558225, 9.548889311420418277493236959645

Graph of the $Z$-function along the critical line