Properties

Label 936.4.a.b
Level $936$
Weight $4$
Character orbit 936.a
Self dual yes
Analytic conductor $55.226$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,4,Mod(1,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.2257877654\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 7 q^{5} - 21 q^{7} - 6 q^{11} + 13 q^{13} + 115 q^{17} - 46 q^{19} - 144 q^{23} - 76 q^{25} + 162 q^{29} + 180 q^{31} - 147 q^{35} + 13 q^{37} - 192 q^{41} - 33 q^{43} - 383 q^{47} + 98 q^{49} - 288 q^{53}+ \cdots - 138 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 7.00000 0 −21.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.4.a.b 1
3.b odd 2 1 104.4.a.a 1
4.b odd 2 1 1872.4.a.l 1
12.b even 2 1 208.4.a.d 1
24.f even 2 1 832.4.a.l 1
24.h odd 2 1 832.4.a.i 1
39.d odd 2 1 1352.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.4.a.a 1 3.b odd 2 1
208.4.a.d 1 12.b even 2 1
832.4.a.i 1 24.h odd 2 1
832.4.a.l 1 24.f even 2 1
936.4.a.b 1 1.a even 1 1 trivial
1352.4.a.b 1 39.d odd 2 1
1872.4.a.l 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 7 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(936))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 7 \) Copy content Toggle raw display
$7$ \( T + 21 \) Copy content Toggle raw display
$11$ \( T + 6 \) Copy content Toggle raw display
$13$ \( T - 13 \) Copy content Toggle raw display
$17$ \( T - 115 \) Copy content Toggle raw display
$19$ \( T + 46 \) Copy content Toggle raw display
$23$ \( T + 144 \) Copy content Toggle raw display
$29$ \( T - 162 \) Copy content Toggle raw display
$31$ \( T - 180 \) Copy content Toggle raw display
$37$ \( T - 13 \) Copy content Toggle raw display
$41$ \( T + 192 \) Copy content Toggle raw display
$43$ \( T + 33 \) Copy content Toggle raw display
$47$ \( T + 383 \) Copy content Toggle raw display
$53$ \( T + 288 \) Copy content Toggle raw display
$59$ \( T + 442 \) Copy content Toggle raw display
$61$ \( T + 680 \) Copy content Toggle raw display
$67$ \( T + 722 \) Copy content Toggle raw display
$71$ \( T - 207 \) Copy content Toggle raw display
$73$ \( T - 274 \) Copy content Toggle raw display
$79$ \( T + 936 \) Copy content Toggle raw display
$83$ \( T - 1204 \) Copy content Toggle raw display
$89$ \( T - 966 \) Copy content Toggle raw display
$97$ \( T + 138 \) Copy content Toggle raw display
show more
show less