L(s) = 1 | − 2.14·2-s + 2.59·4-s − 5-s − 1.53·7-s − 1.27·8-s + 2.14·10-s − 11-s − 1.14·13-s + 3.29·14-s − 2.45·16-s − 3.14·17-s + 19-s − 2.59·20-s + 2.14·22-s + 5.10·23-s + 25-s + 2.45·26-s − 3.98·28-s − 2.99·29-s + 0.460·31-s + 7.81·32-s + 6.74·34-s + 1.53·35-s − 7.62·37-s − 2.14·38-s + 1.27·40-s + 1.79·41-s + ⋯ |
L(s) = 1 | − 1.51·2-s + 1.29·4-s − 0.447·5-s − 0.580·7-s − 0.450·8-s + 0.677·10-s − 0.301·11-s − 0.317·13-s + 0.879·14-s − 0.614·16-s − 0.762·17-s + 0.229·19-s − 0.580·20-s + 0.456·22-s + 1.06·23-s + 0.200·25-s + 0.481·26-s − 0.752·28-s − 0.556·29-s + 0.0827·31-s + 1.38·32-s + 1.15·34-s + 0.259·35-s − 1.25·37-s − 0.347·38-s + 0.201·40-s + 0.280·41-s + ⋯ |
Λ(s)=(=(9405s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9405s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+T |
| 11 | 1+T |
| 19 | 1−T |
good | 2 | 1+2.14T+2T2 |
| 7 | 1+1.53T+7T2 |
| 13 | 1+1.14T+13T2 |
| 17 | 1+3.14T+17T2 |
| 23 | 1−5.10T+23T2 |
| 29 | 1+2.99T+29T2 |
| 31 | 1−0.460T+31T2 |
| 37 | 1+7.62T+37T2 |
| 41 | 1−1.79T+41T2 |
| 43 | 1−10.1T+43T2 |
| 47 | 1−0.0901T+47T2 |
| 53 | 1+2.98T+53T2 |
| 59 | 1−7.98T+59T2 |
| 61 | 1+11.9T+61T2 |
| 67 | 1−9.20T+67T2 |
| 71 | 1−10.2T+71T2 |
| 73 | 1−12.0T+73T2 |
| 79 | 1−4.27T+79T2 |
| 83 | 1−3.17T+83T2 |
| 89 | 1+15.5T+89T2 |
| 97 | 1+17.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.43399010756401432432975473514, −6.97768306421645791196465566894, −6.37920855863236867739757126426, −5.34894813617305951356075150396, −4.59778892218138200158884974455, −3.66759039019303880854685009147, −2.77982209120409767736875232490, −1.99753903194109081320447012897, −0.884428978131899938845889791585, 0,
0.884428978131899938845889791585, 1.99753903194109081320447012897, 2.77982209120409767736875232490, 3.66759039019303880854685009147, 4.59778892218138200158884974455, 5.34894813617305951356075150396, 6.37920855863236867739757126426, 6.97768306421645791196465566894, 7.43399010756401432432975473514