Properties

Label 2-9405-1.1-c1-0-138
Degree $2$
Conductor $9405$
Sign $-1$
Analytic cond. $75.0993$
Root an. cond. $8.66598$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.14·2-s + 2.59·4-s − 5-s − 1.53·7-s − 1.27·8-s + 2.14·10-s − 11-s − 1.14·13-s + 3.29·14-s − 2.45·16-s − 3.14·17-s + 19-s − 2.59·20-s + 2.14·22-s + 5.10·23-s + 25-s + 2.45·26-s − 3.98·28-s − 2.99·29-s + 0.460·31-s + 7.81·32-s + 6.74·34-s + 1.53·35-s − 7.62·37-s − 2.14·38-s + 1.27·40-s + 1.79·41-s + ⋯
L(s)  = 1  − 1.51·2-s + 1.29·4-s − 0.447·5-s − 0.580·7-s − 0.450·8-s + 0.677·10-s − 0.301·11-s − 0.317·13-s + 0.879·14-s − 0.614·16-s − 0.762·17-s + 0.229·19-s − 0.580·20-s + 0.456·22-s + 1.06·23-s + 0.200·25-s + 0.481·26-s − 0.752·28-s − 0.556·29-s + 0.0827·31-s + 1.38·32-s + 1.15·34-s + 0.259·35-s − 1.25·37-s − 0.347·38-s + 0.201·40-s + 0.280·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9405 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9405\)    =    \(3^{2} \cdot 5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(75.0993\)
Root analytic conductor: \(8.66598\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9405,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 + 2.14T + 2T^{2} \)
7 \( 1 + 1.53T + 7T^{2} \)
13 \( 1 + 1.14T + 13T^{2} \)
17 \( 1 + 3.14T + 17T^{2} \)
23 \( 1 - 5.10T + 23T^{2} \)
29 \( 1 + 2.99T + 29T^{2} \)
31 \( 1 - 0.460T + 31T^{2} \)
37 \( 1 + 7.62T + 37T^{2} \)
41 \( 1 - 1.79T + 41T^{2} \)
43 \( 1 - 10.1T + 43T^{2} \)
47 \( 1 - 0.0901T + 47T^{2} \)
53 \( 1 + 2.98T + 53T^{2} \)
59 \( 1 - 7.98T + 59T^{2} \)
61 \( 1 + 11.9T + 61T^{2} \)
67 \( 1 - 9.20T + 67T^{2} \)
71 \( 1 - 10.2T + 71T^{2} \)
73 \( 1 - 12.0T + 73T^{2} \)
79 \( 1 - 4.27T + 79T^{2} \)
83 \( 1 - 3.17T + 83T^{2} \)
89 \( 1 + 15.5T + 89T^{2} \)
97 \( 1 + 17.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.43399010756401432432975473514, −6.97768306421645791196465566894, −6.37920855863236867739757126426, −5.34894813617305951356075150396, −4.59778892218138200158884974455, −3.66759039019303880854685009147, −2.77982209120409767736875232490, −1.99753903194109081320447012897, −0.884428978131899938845889791585, 0, 0.884428978131899938845889791585, 1.99753903194109081320447012897, 2.77982209120409767736875232490, 3.66759039019303880854685009147, 4.59778892218138200158884974455, 5.34894813617305951356075150396, 6.37920855863236867739757126426, 6.97768306421645791196465566894, 7.43399010756401432432975473514

Graph of the $Z$-function along the critical line