Properties

Label 9405.2.a.bh
Level 94059405
Weight 22
Character orbit 9405.a
Self dual yes
Analytic conductor 75.09975.099
Analytic rank 11
Dimension 99
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9405,2,Mod(1,9405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9405, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9405.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 9405=3251119 9405 = 3^{2} \cdot 5 \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 9405.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 75.099303101075.0993031010
Analytic rank: 11
Dimension: 99
Coefficient field: Q[x]/(x9)\mathbb{Q}[x]/(x^{9} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x93x89x7+29x6+23x584x423x3+89x2+8x27 x^{9} - 3x^{8} - 9x^{7} + 29x^{6} + 23x^{5} - 84x^{4} - 23x^{3} + 89x^{2} + 8x - 27 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 1045)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β81,\beta_1,\ldots,\beta_{8} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+(β2+1)q4q5+(β4+1)q7+(β3β11)q8+β1q10q11+(β6+1)q13+(β7β42β1+1)q14++(2β8+4β7+β6++2)q98+O(q100) q - \beta_1 q^{2} + (\beta_{2} + 1) q^{4} - q^{5} + (\beta_{4} + 1) q^{7} + ( - \beta_{3} - \beta_1 - 1) q^{8} + \beta_1 q^{10} - q^{11} + (\beta_{6} + 1) q^{13} + (\beta_{7} - \beta_{4} - 2 \beta_1 + 1) q^{14}+ \cdots + (2 \beta_{8} + 4 \beta_{7} + \beta_{6} + \cdots + 2) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 9q3q2+9q49q5+13q79q8+3q109q11+5q13+2q14+q1613q17+9q199q20+3q228q23+9q258q26+10q28+3q29+32q97+O(q100) 9 q - 3 q^{2} + 9 q^{4} - 9 q^{5} + 13 q^{7} - 9 q^{8} + 3 q^{10} - 9 q^{11} + 5 q^{13} + 2 q^{14} + q^{16} - 13 q^{17} + 9 q^{19} - 9 q^{20} + 3 q^{22} - 8 q^{23} + 9 q^{25} - 8 q^{26} + 10 q^{28} + 3 q^{29}+ \cdots - 32 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x93x89x7+29x6+23x584x423x3+89x2+8x27 x^{9} - 3x^{8} - 9x^{7} + 29x^{6} + 23x^{5} - 84x^{4} - 23x^{3} + 89x^{2} + 8x - 27 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν23 \nu^{2} - 3 Copy content Toggle raw display
β3\beta_{3}== ν35ν1 \nu^{3} - 5\nu - 1 Copy content Toggle raw display
β4\beta_{4}== (ν82ν79ν6+16ν5+21ν431ν312ν2+15ν1)/2 ( \nu^{8} - 2\nu^{7} - 9\nu^{6} + 16\nu^{5} + 21\nu^{4} - 31\nu^{3} - 12\nu^{2} + 15\nu - 1 ) / 2 Copy content Toggle raw display
β5\beta_{5}== (ν84ν75ν6+32ν57ν459ν3+24ν2+25ν7)/2 ( \nu^{8} - 4\nu^{7} - 5\nu^{6} + 32\nu^{5} - 7\nu^{4} - 59\nu^{3} + 24\nu^{2} + 25\nu - 7 ) / 2 Copy content Toggle raw display
β6\beta_{6}== ν73ν67ν5+24ν4+8ν345ν2+19 \nu^{7} - 3\nu^{6} - 7\nu^{5} + 24\nu^{4} + 8\nu^{3} - 45\nu^{2} + 19 Copy content Toggle raw display
β7\beta_{7}== ν7+2ν6+9ν516ν421ν3+31ν2+13ν15 -\nu^{7} + 2\nu^{6} + 9\nu^{5} - 16\nu^{4} - 21\nu^{3} + 31\nu^{2} + 13\nu - 15 Copy content Toggle raw display
β8\beta_{8}== (ν84ν73ν6+30ν525ν447ν3+64ν2+15ν27)/2 ( \nu^{8} - 4\nu^{7} - 3\nu^{6} + 30\nu^{5} - 25\nu^{4} - 47\nu^{3} + 64\nu^{2} + 15\nu - 27 ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+3 \beta_{2} + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+5β1+1 \beta_{3} + 5\beta _1 + 1 Copy content Toggle raw display
ν4\nu^{4}== β8+β6β4+7β2+15 \beta_{8} + \beta_{6} - \beta_{4} + 7\beta_{2} + 15 Copy content Toggle raw display
ν5\nu^{5}== 2β8+β7+2β6β5β4+7β3+β2+27β1+10 2\beta_{8} + \beta_{7} + 2\beta_{6} - \beta_{5} - \beta_{4} + 7\beta_{3} + \beta_{2} + 27\beta _1 + 10 Copy content Toggle raw display
ν6\nu^{6}== 12β8+β7+11β62β510β4+β3+44β2+2β1+89 12\beta_{8} + \beta_{7} + 11\beta_{6} - 2\beta_{5} - 10\beta_{4} + \beta_{3} + 44\beta_{2} + 2\beta _1 + 89 Copy content Toggle raw display
ν7\nu^{7}== 26β8+10β7+24β613β513β4+44β3+16β2+155β1+85 26\beta_{8} + 10\beta_{7} + 24\beta_{6} - 13\beta_{5} - 13\beta_{4} + 44\beta_{3} + 16\beta_{2} + 155\beta _1 + 85 Copy content Toggle raw display
ν8\nu^{8}== 107β8+13β7+94β628β577β4+16β3+277β2+36β1+564 107\beta_{8} + 13\beta_{7} + 94\beta_{6} - 28\beta_{5} - 77\beta_{4} + 16\beta_{3} + 277\beta_{2} + 36\beta _1 + 564 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.69878
2.14345
1.92391
1.22961
0.682920
−0.730132
−1.24377
−1.35249
−2.35228
−2.69878 0 5.28341 −1.00000 0 0.342738 −8.86121 0 2.69878
1.2 −2.14345 0 2.59437 −1.00000 0 −1.53582 −1.27399 0 2.14345
1.3 −1.92391 0 1.70143 −1.00000 0 5.15278 0.574421 0 1.92391
1.4 −1.22961 0 −0.488068 −1.00000 0 1.13367 3.05934 0 1.22961
1.5 −0.682920 0 −1.53362 −1.00000 0 0.856948 2.41318 0 0.682920
1.6 0.730132 0 −1.46691 −1.00000 0 −1.34825 −2.53130 0 −0.730132
1.7 1.24377 0 −0.453038 −1.00000 0 3.83759 −3.05101 0 −1.24377
1.8 1.35249 0 −0.170779 −1.00000 0 2.99075 −2.93595 0 −1.35249
1.9 2.35228 0 3.53320 −1.00000 0 1.56958 3.60652 0 −2.35228
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 +1 +1
1111 +1 +1
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9405.2.a.bh 9
3.b odd 2 1 1045.2.a.k 9
15.d odd 2 1 5225.2.a.p 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1045.2.a.k 9 3.b odd 2 1
5225.2.a.p 9 15.d odd 2 1
9405.2.a.bh 9 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(9405))S_{2}^{\mathrm{new}}(\Gamma_0(9405)):

T29+3T289T2729T26+23T25+84T2423T2389T22+8T2+27 T_{2}^{9} + 3T_{2}^{8} - 9T_{2}^{7} - 29T_{2}^{6} + 23T_{2}^{5} + 84T_{2}^{4} - 23T_{2}^{3} - 89T_{2}^{2} + 8T_{2} + 27 Copy content Toggle raw display
T7913T78+55T7756T76169T75+389T7456T73408T72+320T764 T_{7}^{9} - 13T_{7}^{8} + 55T_{7}^{7} - 56T_{7}^{6} - 169T_{7}^{5} + 389T_{7}^{4} - 56T_{7}^{3} - 408T_{7}^{2} + 320T_{7} - 64 Copy content Toggle raw display
T1395T13829T137+125T136+268T135705T1341080T133+64 T_{13}^{9} - 5 T_{13}^{8} - 29 T_{13}^{7} + 125 T_{13}^{6} + 268 T_{13}^{5} - 705 T_{13}^{4} - 1080 T_{13}^{3} + \cdots - 64 Copy content Toggle raw display
T179+13T178+35T177169T176892T175213T174+5904 T_{17}^{9} + 13 T_{17}^{8} + 35 T_{17}^{7} - 169 T_{17}^{6} - 892 T_{17}^{5} - 213 T_{17}^{4} + \cdots - 5904 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T9+3T8++27 T^{9} + 3 T^{8} + \cdots + 27 Copy content Toggle raw display
33 T9 T^{9} Copy content Toggle raw display
55 (T+1)9 (T + 1)^{9} Copy content Toggle raw display
77 T913T8+64 T^{9} - 13 T^{8} + \cdots - 64 Copy content Toggle raw display
1111 (T+1)9 (T + 1)^{9} Copy content Toggle raw display
1313 T95T8+64 T^{9} - 5 T^{8} + \cdots - 64 Copy content Toggle raw display
1717 T9+13T8+5904 T^{9} + 13 T^{8} + \cdots - 5904 Copy content Toggle raw display
1919 (T1)9 (T - 1)^{9} Copy content Toggle raw display
2323 T9+8T8++192 T^{9} + 8 T^{8} + \cdots + 192 Copy content Toggle raw display
2929 T93T8++1680 T^{9} - 3 T^{8} + \cdots + 1680 Copy content Toggle raw display
3131 T9+9T8++64 T^{9} + 9 T^{8} + \cdots + 64 Copy content Toggle raw display
3737 T9+7T8+32192 T^{9} + 7 T^{8} + \cdots - 32192 Copy content Toggle raw display
4141 T9+9T8+1696176 T^{9} + 9 T^{8} + \cdots - 1696176 Copy content Toggle raw display
4343 T923T8++29632 T^{9} - 23 T^{8} + \cdots + 29632 Copy content Toggle raw display
4747 T9+20T8++576 T^{9} + 20 T^{8} + \cdots + 576 Copy content Toggle raw display
5353 T95T8+768192 T^{9} - 5 T^{8} + \cdots - 768192 Copy content Toggle raw display
5959 T9+19T8++3341760 T^{9} + 19 T^{8} + \cdots + 3341760 Copy content Toggle raw display
6161 T9T8+23824 T^{9} - T^{8} + \cdots - 23824 Copy content Toggle raw display
6767 T9+10T8++46441456 T^{9} + 10 T^{8} + \cdots + 46441456 Copy content Toggle raw display
7171 T9298T7++34636224 T^{9} - 298 T^{7} + \cdots + 34636224 Copy content Toggle raw display
7373 T912T8+160279408 T^{9} - 12 T^{8} + \cdots - 160279408 Copy content Toggle raw display
7979 T9+21T8+71054080 T^{9} + 21 T^{8} + \cdots - 71054080 Copy content Toggle raw display
8383 T9+47T8+909504 T^{9} + 47 T^{8} + \cdots - 909504 Copy content Toggle raw display
8989 T92T8+37547280 T^{9} - 2 T^{8} + \cdots - 37547280 Copy content Toggle raw display
9797 T9+32T8+165140288 T^{9} + 32 T^{8} + \cdots - 165140288 Copy content Toggle raw display
show more
show less