[N,k,chi] = [9405,2,Mod(1,9405)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9405, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("9405.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level :
N N N
= = =
9405 = 3 2 ⋅ 5 ⋅ 11 ⋅ 19 9405 = 3^{2} \cdot 5 \cdot 11 \cdot 19 9 4 0 5 = 3 2 ⋅ 5 ⋅ 1 1 ⋅ 1 9
Weight :
k k k
= = =
2 2 2
Character orbit :
[ χ ] [\chi] [ χ ]
= = =
9405.a (trivial)
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
5 5 5
+ 1 +1 + 1
11 11 1 1
+ 1 +1 + 1
19 19 1 9
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 9405 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(9405)) S 2 n e w ( Γ 0 ( 9 4 0 5 ) ) :
T 2 9 + 3 T 2 8 − 9 T 2 7 − 29 T 2 6 + 23 T 2 5 + 84 T 2 4 − 23 T 2 3 − 89 T 2 2 + 8 T 2 + 27 T_{2}^{9} + 3T_{2}^{8} - 9T_{2}^{7} - 29T_{2}^{6} + 23T_{2}^{5} + 84T_{2}^{4} - 23T_{2}^{3} - 89T_{2}^{2} + 8T_{2} + 27 T 2 9 + 3 T 2 8 − 9 T 2 7 − 2 9 T 2 6 + 2 3 T 2 5 + 8 4 T 2 4 − 2 3 T 2 3 − 8 9 T 2 2 + 8 T 2 + 2 7
T2^9 + 3*T2^8 - 9*T2^7 - 29*T2^6 + 23*T2^5 + 84*T2^4 - 23*T2^3 - 89*T2^2 + 8*T2 + 27
T 7 9 − 13 T 7 8 + 55 T 7 7 − 56 T 7 6 − 169 T 7 5 + 389 T 7 4 − 56 T 7 3 − 408 T 7 2 + 320 T 7 − 64 T_{7}^{9} - 13T_{7}^{8} + 55T_{7}^{7} - 56T_{7}^{6} - 169T_{7}^{5} + 389T_{7}^{4} - 56T_{7}^{3} - 408T_{7}^{2} + 320T_{7} - 64 T 7 9 − 1 3 T 7 8 + 5 5 T 7 7 − 5 6 T 7 6 − 1 6 9 T 7 5 + 3 8 9 T 7 4 − 5 6 T 7 3 − 4 0 8 T 7 2 + 3 2 0 T 7 − 6 4
T7^9 - 13*T7^8 + 55*T7^7 - 56*T7^6 - 169*T7^5 + 389*T7^4 - 56*T7^3 - 408*T7^2 + 320*T7 - 64
T 13 9 − 5 T 13 8 − 29 T 13 7 + 125 T 13 6 + 268 T 13 5 − 705 T 13 4 − 1080 T 13 3 + ⋯ − 64 T_{13}^{9} - 5 T_{13}^{8} - 29 T_{13}^{7} + 125 T_{13}^{6} + 268 T_{13}^{5} - 705 T_{13}^{4} - 1080 T_{13}^{3} + \cdots - 64 T 1 3 9 − 5 T 1 3 8 − 2 9 T 1 3 7 + 1 2 5 T 1 3 6 + 2 6 8 T 1 3 5 − 7 0 5 T 1 3 4 − 1 0 8 0 T 1 3 3 + ⋯ − 6 4
T13^9 - 5*T13^8 - 29*T13^7 + 125*T13^6 + 268*T13^5 - 705*T13^4 - 1080*T13^3 + 272*T13^2 + 448*T13 - 64
T 17 9 + 13 T 17 8 + 35 T 17 7 − 169 T 17 6 − 892 T 17 5 − 213 T 17 4 + ⋯ − 5904 T_{17}^{9} + 13 T_{17}^{8} + 35 T_{17}^{7} - 169 T_{17}^{6} - 892 T_{17}^{5} - 213 T_{17}^{4} + \cdots - 5904 T 1 7 9 + 1 3 T 1 7 8 + 3 5 T 1 7 7 − 1 6 9 T 1 7 6 − 8 9 2 T 1 7 5 − 2 1 3 T 1 7 4 + ⋯ − 5 9 0 4
T17^9 + 13*T17^8 + 35*T17^7 - 169*T17^6 - 892*T17^5 - 213*T17^4 + 4176*T17^3 + 4472*T17^2 - 4352*T17 - 5904
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 9 + 3 T 8 + ⋯ + 27 T^{9} + 3 T^{8} + \cdots + 27 T 9 + 3 T 8 + ⋯ + 2 7
T^9 + 3*T^8 - 9*T^7 - 29*T^6 + 23*T^5 + 84*T^4 - 23*T^3 - 89*T^2 + 8*T + 27
3 3 3
T 9 T^{9} T 9
T^9
5 5 5
( T + 1 ) 9 (T + 1)^{9} ( T + 1 ) 9
(T + 1)^9
7 7 7
T 9 − 13 T 8 + ⋯ − 64 T^{9} - 13 T^{8} + \cdots - 64 T 9 − 1 3 T 8 + ⋯ − 6 4
T^9 - 13*T^8 + 55*T^7 - 56*T^6 - 169*T^5 + 389*T^4 - 56*T^3 - 408*T^2 + 320*T - 64
11 11 1 1
( T + 1 ) 9 (T + 1)^{9} ( T + 1 ) 9
(T + 1)^9
13 13 1 3
T 9 − 5 T 8 + ⋯ − 64 T^{9} - 5 T^{8} + \cdots - 64 T 9 − 5 T 8 + ⋯ − 6 4
T^9 - 5*T^8 - 29*T^7 + 125*T^6 + 268*T^5 - 705*T^4 - 1080*T^3 + 272*T^2 + 448*T - 64
17 17 1 7
T 9 + 13 T 8 + ⋯ − 5904 T^{9} + 13 T^{8} + \cdots - 5904 T 9 + 1 3 T 8 + ⋯ − 5 9 0 4
T^9 + 13*T^8 + 35*T^7 - 169*T^6 - 892*T^5 - 213*T^4 + 4176*T^3 + 4472*T^2 - 4352*T - 5904
19 19 1 9
( T − 1 ) 9 (T - 1)^{9} ( T − 1 ) 9
(T - 1)^9
23 23 2 3
T 9 + 8 T 8 + ⋯ + 192 T^{9} + 8 T^{8} + \cdots + 192 T 9 + 8 T 8 + ⋯ + 1 9 2
T^9 + 8*T^8 - 72*T^7 - 559*T^6 + 1816*T^5 + 11989*T^4 - 16776*T^3 - 69144*T^2 - 9920*T + 192
29 29 2 9
T 9 − 3 T 8 + ⋯ + 1680 T^{9} - 3 T^{8} + \cdots + 1680 T 9 − 3 T 8 + ⋯ + 1 6 8 0
T^9 - 3*T^8 - 81*T^7 + T^6 + 1714*T^5 + 2071*T^4 - 9736*T^3 - 15280*T^2 + 5600*T + 1680
31 31 3 1
T 9 + 9 T 8 + ⋯ + 64 T^{9} + 9 T^{8} + \cdots + 64 T 9 + 9 T 8 + ⋯ + 6 4
T^9 + 9*T^8 - 85*T^7 - 1163*T^6 - 3102*T^5 + 4411*T^4 + 22704*T^3 + 12536*T^2 - 11008*T + 64
37 37 3 7
T 9 + 7 T 8 + ⋯ − 32192 T^{9} + 7 T^{8} + \cdots - 32192 T 9 + 7 T 8 + ⋯ − 3 2 1 9 2
T^9 + 7*T^8 - 162*T^7 - 1038*T^6 + 7089*T^5 + 31775*T^4 - 113328*T^3 - 94808*T^2 + 133888*T - 32192
41 41 4 1
T 9 + 9 T 8 + ⋯ − 1696176 T^{9} + 9 T^{8} + \cdots - 1696176 T 9 + 9 T 8 + ⋯ − 1 6 9 6 1 7 6
T^9 + 9*T^8 - 164*T^7 - 2081*T^6 + 759*T^5 + 95155*T^4 + 398888*T^3 + 244720*T^2 - 1293104*T - 1696176
43 43 4 3
T 9 − 23 T 8 + ⋯ + 29632 T^{9} - 23 T^{8} + \cdots + 29632 T 9 − 2 3 T 8 + ⋯ + 2 9 6 3 2
T^9 - 23*T^8 + 85*T^7 + 1370*T^6 - 12075*T^5 + 29199*T^4 + 5288*T^3 - 89960*T^2 + 50944*T + 29632
47 47 4 7
T 9 + 20 T 8 + ⋯ + 576 T^{9} + 20 T^{8} + \cdots + 576 T 9 + 2 0 T 8 + ⋯ + 5 7 6
T^9 + 20*T^8 + 80*T^7 - 407*T^6 - 2846*T^5 - 2751*T^4 + 6936*T^3 + 6600*T^2 - 7040*T + 576
53 53 5 3
T 9 − 5 T 8 + ⋯ − 768192 T^{9} - 5 T^{8} + \cdots - 768192 T 9 − 5 T 8 + ⋯ − 7 6 8 1 9 2
T^9 - 5*T^8 - 195*T^7 + 869*T^6 + 9650*T^5 - 46727*T^4 - 73080*T^3 + 431576*T^2 + 128*T - 768192
59 59 5 9
T 9 + 19 T 8 + ⋯ + 3341760 T^{9} + 19 T^{8} + \cdots + 3341760 T 9 + 1 9 T 8 + ⋯ + 3 3 4 1 7 6 0
T^9 + 19*T^8 - 91*T^7 - 3651*T^6 - 16780*T^5 + 94965*T^4 + 1089376*T^3 + 3789800*T^2 + 5815040*T + 3341760
61 61 6 1
T 9 − T 8 + ⋯ − 23824 T^{9} - T^{8} + \cdots - 23824 T 9 − T 8 + ⋯ − 2 3 8 2 4
T^9 - T^8 - 211*T^7 + 923*T^6 + 10728*T^5 - 86361*T^4 + 163272*T^3 + 75608*T^2 - 281632*T - 23824
67 67 6 7
T 9 + 10 T 8 + ⋯ + 46441456 T^{9} + 10 T^{8} + \cdots + 46441456 T 9 + 1 0 T 8 + ⋯ + 4 6 4 4 1 4 5 6
T^9 + 10*T^8 - 241*T^7 - 2282*T^6 + 20054*T^5 + 173517*T^4 - 663664*T^3 - 4955536*T^2 + 7369408*T + 46441456
71 71 7 1
T 9 − 298 T 7 + ⋯ + 34636224 T^{9} - 298 T^{7} + \cdots + 34636224 T 9 − 2 9 8 T 7 + ⋯ + 3 4 6 3 6 2 2 4
T^9 - 298*T^7 - 315*T^6 + 29262*T^5 + 61485*T^4 - 1054752*T^3 - 3178680*T^2 + 10083584*T + 34636224
73 73 7 3
T 9 − 12 T 8 + ⋯ − 160279408 T^{9} - 12 T^{8} + \cdots - 160279408 T 9 − 1 2 T 8 + ⋯ − 1 6 0 2 7 9 4 0 8
T^9 - 12*T^8 - 333*T^7 + 3940*T^6 + 35552*T^5 - 414907*T^4 - 1360336*T^3 + 15843768*T^2 + 12833472*T - 160279408
79 79 7 9
T 9 + 21 T 8 + ⋯ − 71054080 T^{9} + 21 T^{8} + \cdots - 71054080 T 9 + 2 1 T 8 + ⋯ − 7 1 0 5 4 0 8 0
T^9 + 21*T^8 - 146*T^7 - 5522*T^6 - 14687*T^5 + 374461*T^4 + 2455984*T^3 - 1182240*T^2 - 39344640*T - 71054080
83 83 8 3
T 9 + 47 T 8 + ⋯ − 909504 T^{9} + 47 T^{8} + \cdots - 909504 T 9 + 4 7 T 8 + ⋯ − 9 0 9 5 0 4
T^9 + 47*T^8 + 777*T^7 + 4421*T^6 - 12714*T^5 - 215881*T^4 - 401264*T^3 + 1792184*T^2 + 4450048*T - 909504
89 89 8 9
T 9 − 2 T 8 + ⋯ − 37547280 T^{9} - 2 T^{8} + \cdots - 37547280 T 9 − 2 T 8 + ⋯ − 3 7 5 4 7 2 8 0
T^9 - 2*T^8 - 369*T^7 + 1200*T^6 + 39954*T^5 - 144465*T^4 - 1459976*T^3 + 5201320*T^2 + 10574080*T - 37547280
97 97 9 7
T 9 + 32 T 8 + ⋯ − 165140288 T^{9} + 32 T^{8} + \cdots - 165140288 T 9 + 3 2 T 8 + ⋯ − 1 6 5 1 4 0 2 8 8
T^9 + 32*T^8 + 45*T^7 - 7970*T^6 - 81062*T^5 + 107509*T^4 + 4455848*T^3 + 12219896*T^2 - 43592640*T - 165140288
show more
show less