L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (1 − i)7-s + (−0.707 + 0.707i)8-s + 3i·9-s + 2·11-s + (4.24 − 4.24i)13-s + 1.41·14-s − 1.00·16-s + (−3 + 3i)17-s + (−2.12 + 2.12i)18-s + (4.24 + i)19-s + (1.41 + 1.41i)22-s + (−1 − i)23-s + 6·26-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (0.377 − 0.377i)7-s + (−0.250 + 0.250i)8-s + i·9-s + 0.603·11-s + (1.17 − 1.17i)13-s + 0.377·14-s − 0.250·16-s + (−0.727 + 0.727i)17-s + (−0.499 + 0.499i)18-s + (0.973 + 0.229i)19-s + (0.301 + 0.301i)22-s + (−0.208 − 0.208i)23-s + 1.17·26-s + ⋯ |
Λ(s)=(=(950s/2ΓC(s)L(s)(0.446−0.894i)Λ(2−s)
Λ(s)=(=(950s/2ΓC(s+1/2)L(s)(0.446−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
950
= 2⋅52⋅19
|
Sign: |
0.446−0.894i
|
Analytic conductor: |
7.58578 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ950(493,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 950, ( :1/2), 0.446−0.894i)
|
Particular Values
L(1) |
≈ |
1.93833+1.19841i |
L(21) |
≈ |
1.93833+1.19841i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707−0.707i)T |
| 5 | 1 |
| 19 | 1+(−4.24−i)T |
good | 3 | 1−3iT2 |
| 7 | 1+(−1+i)T−7iT2 |
| 11 | 1−2T+11T2 |
| 13 | 1+(−4.24+4.24i)T−13iT2 |
| 17 | 1+(3−3i)T−17iT2 |
| 23 | 1+(1+i)T+23iT2 |
| 29 | 1+29T2 |
| 31 | 1−8.48iT−31T2 |
| 37 | 1+(−4.24−4.24i)T+37iT2 |
| 41 | 1+8.48iT−41T2 |
| 43 | 1+(−5−5i)T+43iT2 |
| 47 | 1+(7−7i)T−47iT2 |
| 53 | 1+(−4.24+4.24i)T−53iT2 |
| 59 | 1+59T2 |
| 61 | 1−8T+61T2 |
| 67 | 1+(8.48+8.48i)T+67iT2 |
| 71 | 1+8.48iT−71T2 |
| 73 | 1+(−1−i)T+73iT2 |
| 79 | 1−8.48T+79T2 |
| 83 | 1+(9+9i)T+83iT2 |
| 89 | 1−8.48T+89T2 |
| 97 | 1+(4.24+4.24i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.47453495126117408397793862778, −9.161951939184174383407841428721, −8.217095982245246452738779843562, −7.78619783504216740247987744881, −6.69472329762435480660431454351, −5.84566808015665426875870241924, −4.97875338710202792318699307782, −4.04032593016334732883283840782, −3.02850197860161588080392427030, −1.44807817494085330301590508190,
1.09224996598398599062437472727, 2.37226409512794249815340943665, 3.68913073477991881696100971166, 4.30845811282412531923279970750, 5.53988068858311242324984151069, 6.36513902269706337491651665572, 7.10996802837178866673510985507, 8.480261320899370882769845778311, 9.267625998531578727949606906722, 9.694250279172984659403977935371