L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (1 − i)7-s + (−0.707 + 0.707i)8-s + 3i·9-s + 2·11-s + (4.24 − 4.24i)13-s + 1.41·14-s − 1.00·16-s + (−3 + 3i)17-s + (−2.12 + 2.12i)18-s + (4.24 + i)19-s + (1.41 + 1.41i)22-s + (−1 − i)23-s + 6·26-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (0.377 − 0.377i)7-s + (−0.250 + 0.250i)8-s + i·9-s + 0.603·11-s + (1.17 − 1.17i)13-s + 0.377·14-s − 0.250·16-s + (−0.727 + 0.727i)17-s + (−0.499 + 0.499i)18-s + (0.973 + 0.229i)19-s + (0.301 + 0.301i)22-s + (−0.208 − 0.208i)23-s + 1.17·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.446 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.446 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.93833 + 1.19841i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.93833 + 1.19841i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (-4.24 - i)T \) |
good | 3 | \( 1 - 3iT^{2} \) |
| 7 | \( 1 + (-1 + i)T - 7iT^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 13 | \( 1 + (-4.24 + 4.24i)T - 13iT^{2} \) |
| 17 | \( 1 + (3 - 3i)T - 17iT^{2} \) |
| 23 | \( 1 + (1 + i)T + 23iT^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 8.48iT - 31T^{2} \) |
| 37 | \( 1 + (-4.24 - 4.24i)T + 37iT^{2} \) |
| 41 | \( 1 + 8.48iT - 41T^{2} \) |
| 43 | \( 1 + (-5 - 5i)T + 43iT^{2} \) |
| 47 | \( 1 + (7 - 7i)T - 47iT^{2} \) |
| 53 | \( 1 + (-4.24 + 4.24i)T - 53iT^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 8T + 61T^{2} \) |
| 67 | \( 1 + (8.48 + 8.48i)T + 67iT^{2} \) |
| 71 | \( 1 + 8.48iT - 71T^{2} \) |
| 73 | \( 1 + (-1 - i)T + 73iT^{2} \) |
| 79 | \( 1 - 8.48T + 79T^{2} \) |
| 83 | \( 1 + (9 + 9i)T + 83iT^{2} \) |
| 89 | \( 1 - 8.48T + 89T^{2} \) |
| 97 | \( 1 + (4.24 + 4.24i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.47453495126117408397793862778, −9.161951939184174383407841428721, −8.217095982245246452738779843562, −7.78619783504216740247987744881, −6.69472329762435480660431454351, −5.84566808015665426875870241924, −4.97875338710202792318699307782, −4.04032593016334732883283840782, −3.02850197860161588080392427030, −1.44807817494085330301590508190,
1.09224996598398599062437472727, 2.37226409512794249815340943665, 3.68913073477991881696100971166, 4.30845811282412531923279970750, 5.53988068858311242324984151069, 6.36513902269706337491651665572, 7.10996802837178866673510985507, 8.480261320899370882769845778311, 9.267625998531578727949606906722, 9.694250279172984659403977935371