Properties

Label 950.2.f.a
Level $950$
Weight $2$
Character orbit 950.f
Analytic conductor $7.586$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [950,2,Mod(493,950)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(950, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("950.493");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 950 = 2 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 950.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.58578819202\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 190)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{8}^{3} q^{2} - \zeta_{8}^{2} q^{4} + (\zeta_{8}^{2} + 1) q^{7} + \zeta_{8} q^{8} - 3 \zeta_{8}^{2} q^{9} + 2 q^{11} - 6 \zeta_{8} q^{13} + (\zeta_{8}^{3} - \zeta_{8}) q^{14} - q^{16} + ( - 3 \zeta_{8}^{2} - 3) q^{17} + \cdots - 6 \zeta_{8}^{2} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} + 8 q^{11} - 4 q^{16} - 12 q^{17} - 4 q^{23} + 24 q^{26} + 4 q^{28} - 12 q^{36} + 12 q^{38} + 20 q^{43} - 28 q^{47} + 32 q^{61} - 24 q^{62} + 12 q^{63} - 12 q^{68} + 4 q^{73} - 4 q^{76} + 8 q^{77}+ \cdots + 4 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/950\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(\zeta_{8}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
493.1
0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
−0.707107 0.707107i
−0.707107 0.707107i 0 1.00000i 0 0 1.00000 1.00000i 0.707107 0.707107i 3.00000i 0
493.2 0.707107 + 0.707107i 0 1.00000i 0 0 1.00000 1.00000i −0.707107 + 0.707107i 3.00000i 0
607.1 −0.707107 + 0.707107i 0 1.00000i 0 0 1.00000 + 1.00000i 0.707107 + 0.707107i 3.00000i 0
607.2 0.707107 0.707107i 0 1.00000i 0 0 1.00000 + 1.00000i −0.707107 0.707107i 3.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
19.b odd 2 1 inner
95.g even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 950.2.f.a 4
5.b even 2 1 190.2.f.a 4
5.c odd 4 1 190.2.f.a 4
5.c odd 4 1 inner 950.2.f.a 4
15.d odd 2 1 1710.2.p.a 4
15.e even 4 1 1710.2.p.a 4
19.b odd 2 1 inner 950.2.f.a 4
95.d odd 2 1 190.2.f.a 4
95.g even 4 1 190.2.f.a 4
95.g even 4 1 inner 950.2.f.a 4
285.b even 2 1 1710.2.p.a 4
285.j odd 4 1 1710.2.p.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
190.2.f.a 4 5.b even 2 1
190.2.f.a 4 5.c odd 4 1
190.2.f.a 4 95.d odd 2 1
190.2.f.a 4 95.g even 4 1
950.2.f.a 4 1.a even 1 1 trivial
950.2.f.a 4 5.c odd 4 1 inner
950.2.f.a 4 19.b odd 2 1 inner
950.2.f.a 4 95.g even 4 1 inner
1710.2.p.a 4 15.d odd 2 1
1710.2.p.a 4 15.e even 4 1
1710.2.p.a 4 285.b even 2 1
1710.2.p.a 4 285.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{2}^{\mathrm{new}}(950, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$11$ \( (T - 2)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 1296 \) Copy content Toggle raw display
$17$ \( (T^{2} + 6 T + 18)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 34T^{2} + 361 \) Copy content Toggle raw display
$23$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 1296 \) Copy content Toggle raw display
$41$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 10 T + 50)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 14 T + 98)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 1296 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T - 8)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + 20736 \) Copy content Toggle raw display
$71$ \( (T^{2} + 72)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 2 T + 2)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 18 T + 162)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 1296 \) Copy content Toggle raw display
show more
show less