L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.866 − 0.5i)3-s + (0.499 + 0.866i)4-s + (0.499 + 0.866i)6-s + 4i·7-s − 0.999i·8-s + (−1 − 1.73i)9-s + 3·11-s − 0.999i·12-s + (1.73 − i)13-s + (2 − 3.46i)14-s + (−0.5 + 0.866i)16-s + (−5.19 − 3i)17-s + 2i·18-s + (3.5 + 2.59i)19-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.499 − 0.288i)3-s + (0.249 + 0.433i)4-s + (0.204 + 0.353i)6-s + 1.51i·7-s − 0.353i·8-s + (−0.333 − 0.577i)9-s + 0.904·11-s − 0.288i·12-s + (0.480 − 0.277i)13-s + (0.534 − 0.925i)14-s + (−0.125 + 0.216i)16-s + (−1.26 − 0.727i)17-s + 0.471i·18-s + (0.802 + 0.596i)19-s + ⋯ |
Λ(s)=(=(950s/2ΓC(s)L(s)(0.466−0.884i)Λ(2−s)
Λ(s)=(=(950s/2ΓC(s+1/2)L(s)(0.466−0.884i)Λ(1−s)
Degree: |
2 |
Conductor: |
950
= 2⋅52⋅19
|
Sign: |
0.466−0.884i
|
Analytic conductor: |
7.58578 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ950(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 950, ( :1/2), 0.466−0.884i)
|
Particular Values
L(1) |
≈ |
0.634675+0.382663i |
L(21) |
≈ |
0.634675+0.382663i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866+0.5i)T |
| 5 | 1 |
| 19 | 1+(−3.5−2.59i)T |
good | 3 | 1+(0.866+0.5i)T+(1.5+2.59i)T2 |
| 7 | 1−4iT−7T2 |
| 11 | 1−3T+11T2 |
| 13 | 1+(−1.73+i)T+(6.5−11.2i)T2 |
| 17 | 1+(5.19+3i)T+(8.5+14.7i)T2 |
| 23 | 1+(5.19−3i)T+(11.5−19.9i)T2 |
| 29 | 1+(−14.5+25.1i)T2 |
| 31 | 1−2T+31T2 |
| 37 | 1−10iT−37T2 |
| 41 | 1+(4.5−7.79i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−3.46−2i)T+(21.5+37.2i)T2 |
| 47 | 1+(23.5−40.7i)T2 |
| 53 | 1+(−5.19+3i)T+(26.5−45.8i)T2 |
| 59 | 1+(4.5−7.79i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−2−3.46i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−6.06+3.5i)T+(33.5−58.0i)T2 |
| 71 | 1+(−3+5.19i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−0.866−0.5i)T+(36.5+63.2i)T2 |
| 79 | 1+(2−3.46i)T+(−39.5−68.4i)T2 |
| 83 | 1−3iT−83T2 |
| 89 | 1+(−3−5.19i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−14.7−8.5i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.02153335175736849314243994800, −9.253883584991822195300021768731, −8.745830232621326750504714274519, −7.86286925961538789347959929882, −6.56491162875177472362685968503, −6.13753774016493014430685776534, −5.10107888811314782736796660770, −3.64398279032656960535210406056, −2.58504170256476707877433006267, −1.29940838718436080897476112136,
0.49204898558125110267532481645, 1.99123612801223462201687630043, 3.85084854726474291964734602701, 4.51059847412809537770235779511, 5.74695227921424646434916344299, 6.62718342087125313502679838885, 7.27331410165023910476046279217, 8.258041408658967622893955828608, 9.036013554772395989147657355060, 9.999938917270649970287659278206