Properties

Label 950.2.j.e
Level 950950
Weight 22
Character orbit 950.j
Analytic conductor 7.5867.586
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [950,2,Mod(49,950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(950, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("950.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 950=25219 950 = 2 \cdot 5^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 950.j (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0,2,0,0,-4,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.585788192027.58578819202
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 38)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ12q2+ζ12q3+ζ122q4+ζ122q64ζ123q7+ζ123q82ζ122q9+3q11+ζ123q12+(2ζ1232ζ12)q13+6ζ122q99+O(q100) q + \zeta_{12} q^{2} + \zeta_{12} q^{3} + \zeta_{12}^{2} q^{4} + \zeta_{12}^{2} q^{6} - 4 \zeta_{12}^{3} q^{7} + \zeta_{12}^{3} q^{8} - 2 \zeta_{12}^{2} q^{9} + 3 q^{11} + \zeta_{12}^{3} q^{12} + (2 \zeta_{12}^{3} - 2 \zeta_{12}) q^{13} + \cdots - 6 \zeta_{12}^{2} q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q4+2q64q9+12q11+8q142q16+14q19+8q212q248q26+8q31+12q34+4q368q3918q41+6q44+24q4636q49+12q99+O(q100) 4 q + 2 q^{4} + 2 q^{6} - 4 q^{9} + 12 q^{11} + 8 q^{14} - 2 q^{16} + 14 q^{19} + 8 q^{21} - 2 q^{24} - 8 q^{26} + 8 q^{31} + 12 q^{34} + 4 q^{36} - 8 q^{39} - 18 q^{41} + 6 q^{44} + 24 q^{46} - 36 q^{49}+ \cdots - 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/950Z)×\left(\mathbb{Z}/950\mathbb{Z}\right)^\times.

nn 7777 401401
χ(n)\chi(n) 1-1 ζ122-\zeta_{12}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i −0.866025 0.500000i 0.500000 + 0.866025i 0 0.500000 + 0.866025i 4.00000i 1.00000i −1.00000 1.73205i 0
49.2 0.866025 + 0.500000i 0.866025 + 0.500000i 0.500000 + 0.866025i 0 0.500000 + 0.866025i 4.00000i 1.00000i −1.00000 1.73205i 0
349.1 −0.866025 + 0.500000i −0.866025 + 0.500000i 0.500000 0.866025i 0 0.500000 0.866025i 4.00000i 1.00000i −1.00000 + 1.73205i 0
349.2 0.866025 0.500000i 0.866025 0.500000i 0.500000 0.866025i 0 0.500000 0.866025i 4.00000i 1.00000i −1.00000 + 1.73205i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
19.c even 3 1 inner
95.i even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 950.2.j.e 4
5.b even 2 1 inner 950.2.j.e 4
5.c odd 4 1 38.2.c.a 2
5.c odd 4 1 950.2.e.d 2
15.e even 4 1 342.2.g.b 2
19.c even 3 1 inner 950.2.j.e 4
20.e even 4 1 304.2.i.c 2
40.i odd 4 1 1216.2.i.h 2
40.k even 4 1 1216.2.i.d 2
60.l odd 4 1 2736.2.s.m 2
95.g even 4 1 722.2.c.b 2
95.i even 6 1 inner 950.2.j.e 4
95.l even 12 1 722.2.a.d 1
95.l even 12 1 722.2.c.b 2
95.m odd 12 1 38.2.c.a 2
95.m odd 12 1 722.2.a.c 1
95.m odd 12 1 950.2.e.d 2
95.q odd 36 6 722.2.e.j 6
95.r even 36 6 722.2.e.i 6
285.v even 12 1 342.2.g.b 2
285.v even 12 1 6498.2.a.s 1
285.w odd 12 1 6498.2.a.e 1
380.v even 12 1 304.2.i.c 2
380.v even 12 1 5776.2.a.g 1
380.w odd 12 1 5776.2.a.n 1
760.br odd 12 1 1216.2.i.h 2
760.bw even 12 1 1216.2.i.d 2
1140.bu odd 12 1 2736.2.s.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.2.c.a 2 5.c odd 4 1
38.2.c.a 2 95.m odd 12 1
304.2.i.c 2 20.e even 4 1
304.2.i.c 2 380.v even 12 1
342.2.g.b 2 15.e even 4 1
342.2.g.b 2 285.v even 12 1
722.2.a.c 1 95.m odd 12 1
722.2.a.d 1 95.l even 12 1
722.2.c.b 2 95.g even 4 1
722.2.c.b 2 95.l even 12 1
722.2.e.i 6 95.r even 36 6
722.2.e.j 6 95.q odd 36 6
950.2.e.d 2 5.c odd 4 1
950.2.e.d 2 95.m odd 12 1
950.2.j.e 4 1.a even 1 1 trivial
950.2.j.e 4 5.b even 2 1 inner
950.2.j.e 4 19.c even 3 1 inner
950.2.j.e 4 95.i even 6 1 inner
1216.2.i.d 2 40.k even 4 1
1216.2.i.d 2 760.bw even 12 1
1216.2.i.h 2 40.i odd 4 1
1216.2.i.h 2 760.br odd 12 1
2736.2.s.m 2 60.l odd 4 1
2736.2.s.m 2 1140.bu odd 12 1
5776.2.a.g 1 380.v even 12 1
5776.2.a.n 1 380.w odd 12 1
6498.2.a.e 1 285.w odd 12 1
6498.2.a.s 1 285.v even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(950,[χ])S_{2}^{\mathrm{new}}(950, [\chi]):

T34T32+1 T_{3}^{4} - T_{3}^{2} + 1 Copy content Toggle raw display
T72+16 T_{7}^{2} + 16 Copy content Toggle raw display
T113 T_{11} - 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
33 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
1111 (T3)4 (T - 3)^{4} Copy content Toggle raw display
1313 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
1717 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
1919 (T27T+19)2 (T^{2} - 7 T + 19)^{2} Copy content Toggle raw display
2323 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 (T2)4 (T - 2)^{4} Copy content Toggle raw display
3737 (T2+100)2 (T^{2} + 100)^{2} Copy content Toggle raw display
4141 (T2+9T+81)2 (T^{2} + 9 T + 81)^{2} Copy content Toggle raw display
4343 T416T2+256 T^{4} - 16T^{2} + 256 Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
5959 (T2+9T+81)2 (T^{2} + 9 T + 81)^{2} Copy content Toggle raw display
6161 (T24T+16)2 (T^{2} - 4 T + 16)^{2} Copy content Toggle raw display
6767 T449T2+2401 T^{4} - 49T^{2} + 2401 Copy content Toggle raw display
7171 (T26T+36)2 (T^{2} - 6 T + 36)^{2} Copy content Toggle raw display
7373 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
7979 (T2+4T+16)2 (T^{2} + 4 T + 16)^{2} Copy content Toggle raw display
8383 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
8989 (T26T+36)2 (T^{2} - 6 T + 36)^{2} Copy content Toggle raw display
9797 T4289T2+83521 T^{4} - 289 T^{2} + 83521 Copy content Toggle raw display
show more
show less