gp: [N,k,chi] = [950,2,Mod(49,950)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(950, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("950.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,2,0,2,0,0,-4,0,12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 12 \zeta_{12} ζ 1 2 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 950 Z ) × \left(\mathbb{Z}/950\mathbb{Z}\right)^\times ( Z / 9 5 0 Z ) × .
n n n
77 77 7 7
401 401 4 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− ζ 12 2 -\zeta_{12}^{2} − ζ 1 2 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 950 , [ χ ] ) S_{2}^{\mathrm{new}}(950, [\chi]) S 2 n e w ( 9 5 0 , [ χ ] ) :
T 3 4 − T 3 2 + 1 T_{3}^{4} - T_{3}^{2} + 1 T 3 4 − T 3 2 + 1
T3^4 - T3^2 + 1
T 7 2 + 16 T_{7}^{2} + 16 T 7 2 + 1 6
T7^2 + 16
T 11 − 3 T_{11} - 3 T 1 1 − 3
T11 - 3
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 − T 2 + 1 T^{4} - T^{2} + 1 T 4 − T 2 + 1
T^4 - T^2 + 1
3 3 3
T 4 − T 2 + 1 T^{4} - T^{2} + 1 T 4 − T 2 + 1
T^4 - T^2 + 1
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
( T 2 + 16 ) 2 (T^{2} + 16)^{2} ( T 2 + 1 6 ) 2
(T^2 + 16)^2
11 11 1 1
( T − 3 ) 4 (T - 3)^{4} ( T − 3 ) 4
(T - 3)^4
13 13 1 3
T 4 − 4 T 2 + 16 T^{4} - 4T^{2} + 16 T 4 − 4 T 2 + 1 6
T^4 - 4*T^2 + 16
17 17 1 7
T 4 − 36 T 2 + 1296 T^{4} - 36T^{2} + 1296 T 4 − 3 6 T 2 + 1 2 9 6
T^4 - 36*T^2 + 1296
19 19 1 9
( T 2 − 7 T + 19 ) 2 (T^{2} - 7 T + 19)^{2} ( T 2 − 7 T + 1 9 ) 2
(T^2 - 7*T + 19)^2
23 23 2 3
T 4 − 36 T 2 + 1296 T^{4} - 36T^{2} + 1296 T 4 − 3 6 T 2 + 1 2 9 6
T^4 - 36*T^2 + 1296
29 29 2 9
T 4 T^{4} T 4
T^4
31 31 3 1
( T − 2 ) 4 (T - 2)^{4} ( T − 2 ) 4
(T - 2)^4
37 37 3 7
( T 2 + 100 ) 2 (T^{2} + 100)^{2} ( T 2 + 1 0 0 ) 2
(T^2 + 100)^2
41 41 4 1
( T 2 + 9 T + 81 ) 2 (T^{2} + 9 T + 81)^{2} ( T 2 + 9 T + 8 1 ) 2
(T^2 + 9*T + 81)^2
43 43 4 3
T 4 − 16 T 2 + 256 T^{4} - 16T^{2} + 256 T 4 − 1 6 T 2 + 2 5 6
T^4 - 16*T^2 + 256
47 47 4 7
T 4 T^{4} T 4
T^4
53 53 5 3
T 4 − 36 T 2 + 1296 T^{4} - 36T^{2} + 1296 T 4 − 3 6 T 2 + 1 2 9 6
T^4 - 36*T^2 + 1296
59 59 5 9
( T 2 + 9 T + 81 ) 2 (T^{2} + 9 T + 81)^{2} ( T 2 + 9 T + 8 1 ) 2
(T^2 + 9*T + 81)^2
61 61 6 1
( T 2 − 4 T + 16 ) 2 (T^{2} - 4 T + 16)^{2} ( T 2 − 4 T + 1 6 ) 2
(T^2 - 4*T + 16)^2
67 67 6 7
T 4 − 49 T 2 + 2401 T^{4} - 49T^{2} + 2401 T 4 − 4 9 T 2 + 2 4 0 1
T^4 - 49*T^2 + 2401
71 71 7 1
( T 2 − 6 T + 36 ) 2 (T^{2} - 6 T + 36)^{2} ( T 2 − 6 T + 3 6 ) 2
(T^2 - 6*T + 36)^2
73 73 7 3
T 4 − T 2 + 1 T^{4} - T^{2} + 1 T 4 − T 2 + 1
T^4 - T^2 + 1
79 79 7 9
( T 2 + 4 T + 16 ) 2 (T^{2} + 4 T + 16)^{2} ( T 2 + 4 T + 1 6 ) 2
(T^2 + 4*T + 16)^2
83 83 8 3
( T 2 + 9 ) 2 (T^{2} + 9)^{2} ( T 2 + 9 ) 2
(T^2 + 9)^2
89 89 8 9
( T 2 − 6 T + 36 ) 2 (T^{2} - 6 T + 36)^{2} ( T 2 − 6 T + 3 6 ) 2
(T^2 - 6*T + 36)^2
97 97 9 7
T 4 − 289 T 2 + 83521 T^{4} - 289 T^{2} + 83521 T 4 − 2 8 9 T 2 + 8 3 5 2 1
T^4 - 289*T^2 + 83521
show more
show less