L(s) = 1 | + 3i·3-s − 0.612i·5-s + 22.7·7-s − 9·9-s + 60.2i·11-s + 52.9i·13-s + 1.83·15-s + 47.1·17-s − 29.1i·19-s + 68.2i·21-s − 109.·23-s + 124.·25-s − 27i·27-s − 10.4i·29-s + 220.·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 0.0547i·5-s + 1.22·7-s − 0.333·9-s + 1.65i·11-s + 1.12i·13-s + 0.0316·15-s + 0.672·17-s − 0.352i·19-s + 0.709i·21-s − 0.992·23-s + 0.996·25-s − 0.192i·27-s − 0.0667i·29-s + 1.27·31-s + ⋯ |
Λ(s)=(=(96s/2ΓC(s)L(s)(0.427−0.903i)Λ(4−s)
Λ(s)=(=(96s/2ΓC(s+3/2)L(s)(0.427−0.903i)Λ(1−s)
Degree: |
2 |
Conductor: |
96
= 25⋅3
|
Sign: |
0.427−0.903i
|
Analytic conductor: |
5.66418 |
Root analytic conductor: |
2.37995 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ96(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 96, ( :3/2), 0.427−0.903i)
|
Particular Values
L(2) |
≈ |
1.40024+0.886509i |
L(21) |
≈ |
1.40024+0.886509i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3iT |
good | 5 | 1+0.612iT−125T2 |
| 7 | 1−22.7T+343T2 |
| 11 | 1−60.2iT−1.33e3T2 |
| 13 | 1−52.9iT−2.19e3T2 |
| 17 | 1−47.1T+4.91e3T2 |
| 19 | 1+29.1iT−6.85e3T2 |
| 23 | 1+109.T+1.21e4T2 |
| 29 | 1+10.4iT−2.43e4T2 |
| 31 | 1−220.T+2.97e4T2 |
| 37 | 1+408.iT−5.06e4T2 |
| 41 | 1+360.T+6.89e4T2 |
| 43 | 1+236.iT−7.95e4T2 |
| 47 | 1+129.T+1.03e5T2 |
| 53 | 1+117.iT−1.48e5T2 |
| 59 | 1+262.iT−2.05e5T2 |
| 61 | 1−273.iT−2.26e5T2 |
| 67 | 1+89.4iT−3.00e5T2 |
| 71 | 1−350.T+3.57e5T2 |
| 73 | 1−532.T+3.89e5T2 |
| 79 | 1−166.T+4.93e5T2 |
| 83 | 1−361.iT−5.71e5T2 |
| 89 | 1−40.3T+7.04e5T2 |
| 97 | 1+614.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.99196963554436405536025241066, −12.37128819844717534980187252489, −11.57905096378395016030190116622, −10.39166112859402680759411472612, −9.393208089701774574074209121972, −8.163604944758821765782660197407, −6.92620319782875688718453191580, −5.10358281834891909894618662917, −4.22645757138495605512171968302, −1.96172237674734729345538275186,
1.09999676689116059091841406697, 3.12210026545588998535672609522, 5.12778777022101366021161096721, 6.28294529778078933220065088040, 8.037388212965681409055556069259, 8.333847521904450220817807060741, 10.24235431740687672921695475086, 11.27171268945163775357138239647, 12.13128679009365501666463664687, 13.44311101427324408421837291811