Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [96,4,Mod(49,96)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(96, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("96.49");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 96.d (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 6.0.8248384.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 24) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
0 | − | 3.00000i | 0 | − | 9.15486i | 0 | −27.4175 | 0 | −9.00000 | 0 | ||||||||||||||||||||||||||||||||||
49.2 | 0 | − | 3.00000i | 0 | 0.612661i | 0 | 22.7441 | 0 | −9.00000 | 0 | ||||||||||||||||||||||||||||||||||||
49.3 | 0 | − | 3.00000i | 0 | 18.5422i | 0 | −9.32669 | 0 | −9.00000 | 0 | ||||||||||||||||||||||||||||||||||||
49.4 | 0 | 3.00000i | 0 | − | 18.5422i | 0 | −9.32669 | 0 | −9.00000 | 0 | ||||||||||||||||||||||||||||||||||||
49.5 | 0 | 3.00000i | 0 | − | 0.612661i | 0 | 22.7441 | 0 | −9.00000 | 0 | ||||||||||||||||||||||||||||||||||||
49.6 | 0 | 3.00000i | 0 | 9.15486i | 0 | −27.4175 | 0 | −9.00000 | 0 | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 96.4.d.a | 6 | |
3.b | odd | 2 | 1 | 288.4.d.d | 6 | ||
4.b | odd | 2 | 1 | 24.4.d.a | ✓ | 6 | |
8.b | even | 2 | 1 | inner | 96.4.d.a | 6 | |
8.d | odd | 2 | 1 | 24.4.d.a | ✓ | 6 | |
12.b | even | 2 | 1 | 72.4.d.d | 6 | ||
16.e | even | 4 | 1 | 768.4.a.q | 3 | ||
16.e | even | 4 | 1 | 768.4.a.t | 3 | ||
16.f | odd | 4 | 1 | 768.4.a.r | 3 | ||
16.f | odd | 4 | 1 | 768.4.a.s | 3 | ||
24.f | even | 2 | 1 | 72.4.d.d | 6 | ||
24.h | odd | 2 | 1 | 288.4.d.d | 6 | ||
48.i | odd | 4 | 1 | 2304.4.a.bu | 3 | ||
48.i | odd | 4 | 1 | 2304.4.a.bw | 3 | ||
48.k | even | 4 | 1 | 2304.4.a.bt | 3 | ||
48.k | even | 4 | 1 | 2304.4.a.bv | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
24.4.d.a | ✓ | 6 | 4.b | odd | 2 | 1 | |
24.4.d.a | ✓ | 6 | 8.d | odd | 2 | 1 | |
72.4.d.d | 6 | 12.b | even | 2 | 1 | ||
72.4.d.d | 6 | 24.f | even | 2 | 1 | ||
96.4.d.a | 6 | 1.a | even | 1 | 1 | trivial | |
96.4.d.a | 6 | 8.b | even | 2 | 1 | inner | |
288.4.d.d | 6 | 3.b | odd | 2 | 1 | ||
288.4.d.d | 6 | 24.h | odd | 2 | 1 | ||
768.4.a.q | 3 | 16.e | even | 4 | 1 | ||
768.4.a.r | 3 | 16.f | odd | 4 | 1 | ||
768.4.a.s | 3 | 16.f | odd | 4 | 1 | ||
768.4.a.t | 3 | 16.e | even | 4 | 1 | ||
2304.4.a.bt | 3 | 48.k | even | 4 | 1 | ||
2304.4.a.bu | 3 | 48.i | odd | 4 | 1 | ||
2304.4.a.bv | 3 | 48.k | even | 4 | 1 | ||
2304.4.a.bw | 3 | 48.i | odd | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace .