Properties

Label 96.4.d.a
Level 9696
Weight 44
Character orbit 96.d
Analytic conductor 5.6645.664
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [96,4,Mod(49,96)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(96, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("96.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 96=253 96 = 2^{5} \cdot 3
Weight: k k == 4 4
Character orbit: [χ][\chi] == 96.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.664183360555.66418336055
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.8248384.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6+x412x3+4x2+64 x^{6} + x^{4} - 12x^{3} + 4x^{2} + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 21232 2^{12}\cdot 3^{2}
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q3+(β3β2)q5+(β15)q79q9+(2β4+2β3)q11+(β4+3β3+6β2)q13+(β5+10)q15++(18β418β3)q99+O(q100) q + \beta_{2} q^{3} + (\beta_{3} - \beta_{2}) q^{5} + (\beta_1 - 5) q^{7} - 9 q^{9} + ( - 2 \beta_{4} + 2 \beta_{3}) q^{11} + ( - \beta_{4} + 3 \beta_{3} + 6 \beta_{2}) q^{13} + ( - \beta_{5} + 10) q^{15}+ \cdots + (18 \beta_{4} - 18 \beta_{3}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q28q754q9+60q15+52q17328q23106q25+636q31312q39+236q41+408q47+654q491024q55168q57+252q631744q65+1704q71+2444q97+O(q100) 6 q - 28 q^{7} - 54 q^{9} + 60 q^{15} + 52 q^{17} - 328 q^{23} - 106 q^{25} + 636 q^{31} - 312 q^{39} + 236 q^{41} + 408 q^{47} + 654 q^{49} - 1024 q^{55} - 168 q^{57} + 252 q^{63} - 1744 q^{65} + 1704 q^{71}+ \cdots - 2444 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6+x412x3+4x2+64 x^{6} + x^{4} - 12x^{3} + 4x^{2} + 64 : Copy content Toggle raw display

β1\beta_{1}== ν4+3ν2+12ν1 -\nu^{4} + 3\nu^{2} + 12\nu - 1 Copy content Toggle raw display
β2\beta_{2}== (3ν56ν4+9ν3+6ν2+24ν96)/32 ( -3\nu^{5} - 6\nu^{4} + 9\nu^{3} + 6\nu^{2} + 24\nu - 96 ) / 32 Copy content Toggle raw display
β3\beta_{3}== (5ν5+6ν417ν3+90ν2184ν+96)/32 ( -5\nu^{5} + 6\nu^{4} - 17\nu^{3} + 90\nu^{2} - 184\nu + 96 ) / 32 Copy content Toggle raw display
β4\beta_{4}== (5ν5+6ν4+111ν3+90ν256ν672)/32 ( -5\nu^{5} + 6\nu^{4} + 111\nu^{3} + 90\nu^{2} - 56\nu - 672 ) / 32 Copy content Toggle raw display
β5\beta_{5}== (3ν5+6ν43ν3+18ν236ν+8)/2 ( -3\nu^{5} + 6\nu^{4} - 3\nu^{3} + 18\nu^{2} - 36\nu + 8 ) / 2 Copy content Toggle raw display
ν\nu== (β56β36β2+3β11)/48 ( \beta_{5} - 6\beta_{3} - 6\beta_{2} + 3\beta _1 - 1 ) / 48 Copy content Toggle raw display
ν2\nu^{2}== (3β4+9β320β2+6β118)/48 ( 3\beta_{4} + 9\beta_{3} - 20\beta_{2} + 6\beta _1 - 18 ) / 48 Copy content Toggle raw display
ν3\nu^{3}== (β5+12β46β3+6β23β1+289)/48 ( -\beta_{5} + 12\beta_{4} - 6\beta_{3} + 6\beta_{2} - 3\beta _1 + 289 ) / 48 Copy content Toggle raw display
ν4\nu^{4}== (4β5+3β415β344β2+2β138)/16 ( 4\beta_{5} + 3\beta_{4} - 15\beta_{3} - 44\beta_{2} + 2\beta _1 - 38 ) / 16 Copy content Toggle raw display
ν5\nu^{5}== (19β5+24β4+42β3318β2+15β1485)/48 ( -19\beta_{5} + 24\beta_{4} + 42\beta_{3} - 318\beta_{2} + 15\beta _1 - 485 ) / 48 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/96Z)×\left(\mathbb{Z}/96\mathbb{Z}\right)^\times.

nn 3131 3737 6565
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
−0.641412 + 1.89436i
1.88322 + 0.673417i
−1.24181 1.56777i
−1.24181 + 1.56777i
1.88322 0.673417i
−0.641412 1.89436i
0 3.00000i 0 9.15486i 0 −27.4175 0 −9.00000 0
49.2 0 3.00000i 0 0.612661i 0 22.7441 0 −9.00000 0
49.3 0 3.00000i 0 18.5422i 0 −9.32669 0 −9.00000 0
49.4 0 3.00000i 0 18.5422i 0 −9.32669 0 −9.00000 0
49.5 0 3.00000i 0 0.612661i 0 22.7441 0 −9.00000 0
49.6 0 3.00000i 0 9.15486i 0 −27.4175 0 −9.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 96.4.d.a 6
3.b odd 2 1 288.4.d.d 6
4.b odd 2 1 24.4.d.a 6
8.b even 2 1 inner 96.4.d.a 6
8.d odd 2 1 24.4.d.a 6
12.b even 2 1 72.4.d.d 6
16.e even 4 1 768.4.a.q 3
16.e even 4 1 768.4.a.t 3
16.f odd 4 1 768.4.a.r 3
16.f odd 4 1 768.4.a.s 3
24.f even 2 1 72.4.d.d 6
24.h odd 2 1 288.4.d.d 6
48.i odd 4 1 2304.4.a.bu 3
48.i odd 4 1 2304.4.a.bw 3
48.k even 4 1 2304.4.a.bt 3
48.k even 4 1 2304.4.a.bv 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.4.d.a 6 4.b odd 2 1
24.4.d.a 6 8.d odd 2 1
72.4.d.d 6 12.b even 2 1
72.4.d.d 6 24.f even 2 1
96.4.d.a 6 1.a even 1 1 trivial
96.4.d.a 6 8.b even 2 1 inner
288.4.d.d 6 3.b odd 2 1
288.4.d.d 6 24.h odd 2 1
768.4.a.q 3 16.e even 4 1
768.4.a.r 3 16.f odd 4 1
768.4.a.s 3 16.f odd 4 1
768.4.a.t 3 16.e even 4 1
2304.4.a.bt 3 48.k even 4 1
2304.4.a.bu 3 48.i odd 4 1
2304.4.a.bv 3 48.k even 4 1
2304.4.a.bw 3 48.i odd 4 1

Hecke kernels

This newform subspace is the entire newspace S4new(96,[χ])S_{4}^{\mathrm{new}}(96, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 (T2+9)3 (T^{2} + 9)^{3} Copy content Toggle raw display
55 T6+428T4++10816 T^{6} + 428 T^{4} + \cdots + 10816 Copy content Toggle raw display
77 (T3+14T2+5816)2 (T^{3} + 14 T^{2} + \cdots - 5816)^{2} Copy content Toggle raw display
1111 T6++2415919104 T^{6} + \cdots + 2415919104 Copy content Toggle raw display
1313 T6++3121680384 T^{6} + \cdots + 3121680384 Copy content Toggle raw display
1717 (T326T2++477576)2 (T^{3} - 26 T^{2} + \cdots + 477576)^{2} Copy content Toggle raw display
1919 T6++75488661504 T^{6} + \cdots + 75488661504 Copy content Toggle raw display
2323 (T3+164T2++45504)2 (T^{3} + 164 T^{2} + \cdots + 45504)^{2} Copy content Toggle raw display
2929 T6++3766031424 T^{6} + \cdots + 3766031424 Copy content Toggle raw display
3131 (T3318T2++3749624)2 (T^{3} - 318 T^{2} + \cdots + 3749624)^{2} Copy content Toggle raw display
3737 T6++6879707136 T^{6} + \cdots + 6879707136 Copy content Toggle raw display
4141 (T3118T2++19985976)2 (T^{3} - 118 T^{2} + \cdots + 19985976)^{2} Copy content Toggle raw display
4343 T6++73984219582464 T^{6} + \cdots + 73984219582464 Copy content Toggle raw display
4747 (T3204T2++1964736)2 (T^{3} - 204 T^{2} + \cdots + 1964736)^{2} Copy content Toggle raw display
5353 T6++427051482970176 T^{6} + \cdots + 427051482970176 Copy content Toggle raw display
5959 T6++72651484205056 T^{6} + \cdots + 72651484205056 Copy content Toggle raw display
6161 T6++10 ⁣ ⁣56 T^{6} + \cdots + 10\!\cdots\!56 Copy content Toggle raw display
6767 T6++10 ⁣ ⁣84 T^{6} + \cdots + 10\!\cdots\!84 Copy content Toggle raw display
7171 (T3852T2++85084992)2 (T^{3} - 852 T^{2} + \cdots + 85084992)^{2} Copy content Toggle raw display
7373 (T3478T2++120833304)2 (T^{3} - 478 T^{2} + \cdots + 120833304)^{2} Copy content Toggle raw display
7979 (T322T2++7902616)2 (T^{3} - 22 T^{2} + \cdots + 7902616)^{2} Copy content Toggle raw display
8383 T6++14 ⁣ ⁣96 T^{6} + \cdots + 14\!\cdots\!96 Copy content Toggle raw display
8989 (T3+110T2++1423656)2 (T^{3} + 110 T^{2} + \cdots + 1423656)^{2} Copy content Toggle raw display
9797 (T3+1222T2+74802424)2 (T^{3} + 1222 T^{2} + \cdots - 74802424)^{2} Copy content Toggle raw display
show more
show less