Properties

Label 96.4.d.a
Level $96$
Weight $4$
Character orbit 96.d
Analytic conductor $5.664$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [96,4,Mod(49,96)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(96, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("96.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 96 = 2^{5} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 96.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.66418336055\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.8248384.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + x^{4} - 12x^{3} + 4x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + (\beta_{3} - \beta_{2}) q^{5} + (\beta_1 - 5) q^{7} - 9 q^{9} + ( - 2 \beta_{4} + 2 \beta_{3}) q^{11} + ( - \beta_{4} + 3 \beta_{3} + 6 \beta_{2}) q^{13} + ( - \beta_{5} + 10) q^{15}+ \cdots + (18 \beta_{4} - 18 \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 28 q^{7} - 54 q^{9} + 60 q^{15} + 52 q^{17} - 328 q^{23} - 106 q^{25} + 636 q^{31} - 312 q^{39} + 236 q^{41} + 408 q^{47} + 654 q^{49} - 1024 q^{55} - 168 q^{57} + 252 q^{63} - 1744 q^{65} + 1704 q^{71}+ \cdots - 2444 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + x^{4} - 12x^{3} + 4x^{2} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -\nu^{4} + 3\nu^{2} + 12\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -3\nu^{5} - 6\nu^{4} + 9\nu^{3} + 6\nu^{2} + 24\nu - 96 ) / 32 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -5\nu^{5} + 6\nu^{4} - 17\nu^{3} + 90\nu^{2} - 184\nu + 96 ) / 32 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -5\nu^{5} + 6\nu^{4} + 111\nu^{3} + 90\nu^{2} - 56\nu - 672 ) / 32 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -3\nu^{5} + 6\nu^{4} - 3\nu^{3} + 18\nu^{2} - 36\nu + 8 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} - 6\beta_{3} - 6\beta_{2} + 3\beta _1 - 1 ) / 48 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{4} + 9\beta_{3} - 20\beta_{2} + 6\beta _1 - 18 ) / 48 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{5} + 12\beta_{4} - 6\beta_{3} + 6\beta_{2} - 3\beta _1 + 289 ) / 48 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 4\beta_{5} + 3\beta_{4} - 15\beta_{3} - 44\beta_{2} + 2\beta _1 - 38 ) / 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -19\beta_{5} + 24\beta_{4} + 42\beta_{3} - 318\beta_{2} + 15\beta _1 - 485 ) / 48 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/96\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(37\) \(65\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
−0.641412 + 1.89436i
1.88322 + 0.673417i
−1.24181 1.56777i
−1.24181 + 1.56777i
1.88322 0.673417i
−0.641412 1.89436i
0 3.00000i 0 9.15486i 0 −27.4175 0 −9.00000 0
49.2 0 3.00000i 0 0.612661i 0 22.7441 0 −9.00000 0
49.3 0 3.00000i 0 18.5422i 0 −9.32669 0 −9.00000 0
49.4 0 3.00000i 0 18.5422i 0 −9.32669 0 −9.00000 0
49.5 0 3.00000i 0 0.612661i 0 22.7441 0 −9.00000 0
49.6 0 3.00000i 0 9.15486i 0 −27.4175 0 −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 96.4.d.a 6
3.b odd 2 1 288.4.d.d 6
4.b odd 2 1 24.4.d.a 6
8.b even 2 1 inner 96.4.d.a 6
8.d odd 2 1 24.4.d.a 6
12.b even 2 1 72.4.d.d 6
16.e even 4 1 768.4.a.q 3
16.e even 4 1 768.4.a.t 3
16.f odd 4 1 768.4.a.r 3
16.f odd 4 1 768.4.a.s 3
24.f even 2 1 72.4.d.d 6
24.h odd 2 1 288.4.d.d 6
48.i odd 4 1 2304.4.a.bu 3
48.i odd 4 1 2304.4.a.bw 3
48.k even 4 1 2304.4.a.bt 3
48.k even 4 1 2304.4.a.bv 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.4.d.a 6 4.b odd 2 1
24.4.d.a 6 8.d odd 2 1
72.4.d.d 6 12.b even 2 1
72.4.d.d 6 24.f even 2 1
96.4.d.a 6 1.a even 1 1 trivial
96.4.d.a 6 8.b even 2 1 inner
288.4.d.d 6 3.b odd 2 1
288.4.d.d 6 24.h odd 2 1
768.4.a.q 3 16.e even 4 1
768.4.a.r 3 16.f odd 4 1
768.4.a.s 3 16.f odd 4 1
768.4.a.t 3 16.e even 4 1
2304.4.a.bt 3 48.k even 4 1
2304.4.a.bu 3 48.i odd 4 1
2304.4.a.bv 3 48.k even 4 1
2304.4.a.bw 3 48.i odd 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(96, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} + 428 T^{4} + \cdots + 10816 \) Copy content Toggle raw display
$7$ \( (T^{3} + 14 T^{2} + \cdots - 5816)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 2415919104 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 3121680384 \) Copy content Toggle raw display
$17$ \( (T^{3} - 26 T^{2} + \cdots + 477576)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 75488661504 \) Copy content Toggle raw display
$23$ \( (T^{3} + 164 T^{2} + \cdots + 45504)^{2} \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 3766031424 \) Copy content Toggle raw display
$31$ \( (T^{3} - 318 T^{2} + \cdots + 3749624)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 6879707136 \) Copy content Toggle raw display
$41$ \( (T^{3} - 118 T^{2} + \cdots + 19985976)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 73984219582464 \) Copy content Toggle raw display
$47$ \( (T^{3} - 204 T^{2} + \cdots + 1964736)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 427051482970176 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 72651484205056 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 10\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 10\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( (T^{3} - 852 T^{2} + \cdots + 85084992)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} - 478 T^{2} + \cdots + 120833304)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} - 22 T^{2} + \cdots + 7902616)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 14\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( (T^{3} + 110 T^{2} + \cdots + 1423656)^{2} \) Copy content Toggle raw display
$97$ \( (T^{3} + 1222 T^{2} + \cdots - 74802424)^{2} \) Copy content Toggle raw display
show more
show less