Properties

Label 2-96-1.1-c5-0-5
Degree $2$
Conductor $96$
Sign $1$
Analytic cond. $15.3968$
Root an. cond. $3.92388$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s + 107.·5-s + 149.·7-s + 81·9-s − 434.·11-s − 392.·13-s + 963.·15-s + 803.·17-s + 854.·19-s + 1.34e3·21-s − 4.59e3·23-s + 8.34e3·25-s + 729·27-s + 6.79e3·29-s − 4.79e3·31-s − 3.91e3·33-s + 1.59e4·35-s − 909.·37-s − 3.53e3·39-s − 2.37e3·41-s − 8.66e3·43-s + 8.67e3·45-s + 1.68e4·47-s + 5.41e3·49-s + 7.23e3·51-s + 1.08e4·53-s − 4.65e4·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.91·5-s + 1.14·7-s + 0.333·9-s − 1.08·11-s − 0.644·13-s + 1.10·15-s + 0.674·17-s + 0.543·19-s + 0.663·21-s − 1.81·23-s + 2.66·25-s + 0.192·27-s + 1.50·29-s − 0.896·31-s − 0.625·33-s + 2.20·35-s − 0.109·37-s − 0.371·39-s − 0.220·41-s − 0.714·43-s + 0.638·45-s + 1.11·47-s + 0.322·49-s + 0.389·51-s + 0.529·53-s − 2.07·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 96 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 96 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(96\)    =    \(2^{5} \cdot 3\)
Sign: $1$
Analytic conductor: \(15.3968\)
Root analytic conductor: \(3.92388\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 96,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.207276984\)
\(L(\frac12)\) \(\approx\) \(3.207276984\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 9T \)
good5 \( 1 - 107.T + 3.12e3T^{2} \)
7 \( 1 - 149.T + 1.68e4T^{2} \)
11 \( 1 + 434.T + 1.61e5T^{2} \)
13 \( 1 + 392.T + 3.71e5T^{2} \)
17 \( 1 - 803.T + 1.41e6T^{2} \)
19 \( 1 - 854.T + 2.47e6T^{2} \)
23 \( 1 + 4.59e3T + 6.43e6T^{2} \)
29 \( 1 - 6.79e3T + 2.05e7T^{2} \)
31 \( 1 + 4.79e3T + 2.86e7T^{2} \)
37 \( 1 + 909.T + 6.93e7T^{2} \)
41 \( 1 + 2.37e3T + 1.15e8T^{2} \)
43 \( 1 + 8.66e3T + 1.47e8T^{2} \)
47 \( 1 - 1.68e4T + 2.29e8T^{2} \)
53 \( 1 - 1.08e4T + 4.18e8T^{2} \)
59 \( 1 - 8.30e3T + 7.14e8T^{2} \)
61 \( 1 + 3.59e4T + 8.44e8T^{2} \)
67 \( 1 - 2.50e4T + 1.35e9T^{2} \)
71 \( 1 + 5.78e4T + 1.80e9T^{2} \)
73 \( 1 + 6.80e4T + 2.07e9T^{2} \)
79 \( 1 + 9.87e4T + 3.07e9T^{2} \)
83 \( 1 - 3.48e4T + 3.93e9T^{2} \)
89 \( 1 - 3.46e4T + 5.58e9T^{2} \)
97 \( 1 - 3.98e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.31474362258981328664402008445, −12.10912481332933460893494155649, −10.42098276578784588577857983225, −9.913199136562547562677378010591, −8.626802183863672773537982939927, −7.50694669914831601736673824687, −5.84140299252974182624626090693, −4.90464331602273466484279221205, −2.61657655144675772129530448179, −1.60951289621691539682008742832, 1.60951289621691539682008742832, 2.61657655144675772129530448179, 4.90464331602273466484279221205, 5.84140299252974182624626090693, 7.50694669914831601736673824687, 8.626802183863672773537982939927, 9.913199136562547562677378010591, 10.42098276578784588577857983225, 12.10912481332933460893494155649, 13.31474362258981328664402008445

Graph of the $Z$-function along the critical line