Properties

Label 96.6.a.h
Level 9696
Weight 66
Character orbit 96.a
Self dual yes
Analytic conductor 15.39715.397
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [96,6,Mod(1,96)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(96, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("96.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 96=253 96 = 2^{5} \cdot 3
Weight: k k == 6 6
Character orbit: [χ][\chi] == 96.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 15.396846702015.3968467020
Analytic rank: 00
Dimension: 22
Coefficient field: Q(31)\Q(\sqrt{31})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x231 x^{2} - 31 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=1631\beta = 16\sqrt{31}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+9q3+(β+18)q5+(β+60)q7+81q9+(6β+100)q11+(6β+142)q13+(9β+162)q15+(6β+1338)q17+(10β36)q19+(9β+540)q21++(486β+8100)q99+O(q100) q + 9 q^{3} + (\beta + 18) q^{5} + (\beta + 60) q^{7} + 81 q^{9} + ( - 6 \beta + 100) q^{11} + ( - 6 \beta + 142) q^{13} + (9 \beta + 162) q^{15} + ( - 6 \beta + 1338) q^{17} + (10 \beta - 36) q^{19} + (9 \beta + 540) q^{21}+ \cdots + ( - 486 \beta + 8100) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+18q3+36q5+120q7+162q9+200q11+284q13+324q15+2676q1772q19+1080q213840q23+10270q25+1458q27+10212q2910488q31++16200q99+O(q100) 2 q + 18 q^{3} + 36 q^{5} + 120 q^{7} + 162 q^{9} + 200 q^{11} + 284 q^{13} + 324 q^{15} + 2676 q^{17} - 72 q^{19} + 1080 q^{21} - 3840 q^{23} + 10270 q^{25} + 1458 q^{27} + 10212 q^{29} - 10488 q^{31}+ \cdots + 16200 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−5.56776
5.56776
0 9.00000 0 −71.0842 0 −29.0842 0 81.0000 0
1.2 0 9.00000 0 107.084 0 149.084 0 81.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 96.6.a.h yes 2
3.b odd 2 1 288.6.a.o 2
4.b odd 2 1 96.6.a.g 2
8.b even 2 1 192.6.a.q 2
8.d odd 2 1 192.6.a.r 2
12.b even 2 1 288.6.a.n 2
16.e even 4 2 768.6.d.s 4
16.f odd 4 2 768.6.d.z 4
24.f even 2 1 576.6.a.bm 2
24.h odd 2 1 576.6.a.bn 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.6.a.g 2 4.b odd 2 1
96.6.a.h yes 2 1.a even 1 1 trivial
192.6.a.q 2 8.b even 2 1
192.6.a.r 2 8.d odd 2 1
288.6.a.n 2 12.b even 2 1
288.6.a.o 2 3.b odd 2 1
576.6.a.bm 2 24.f even 2 1
576.6.a.bn 2 24.h odd 2 1
768.6.d.s 4 16.e even 4 2
768.6.d.z 4 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S6new(Γ0(96))S_{6}^{\mathrm{new}}(\Gamma_0(96)):

T5236T57612 T_{5}^{2} - 36T_{5} - 7612 Copy content Toggle raw display
T72120T74336 T_{7}^{2} - 120T_{7} - 4336 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T9)2 (T - 9)^{2} Copy content Toggle raw display
55 T236T7612 T^{2} - 36T - 7612 Copy content Toggle raw display
77 T2120T4336 T^{2} - 120T - 4336 Copy content Toggle raw display
1111 T2200T275696 T^{2} - 200T - 275696 Copy content Toggle raw display
1313 T2284T265532 T^{2} - 284T - 265532 Copy content Toggle raw display
1717 T22676T+1504548 T^{2} - 2676 T + 1504548 Copy content Toggle raw display
1919 T2+72T792304 T^{2} + 72T - 792304 Copy content Toggle raw display
2323 T2+3840T3456000 T^{2} + 3840 T - 3456000 Copy content Toggle raw display
2929 T210212T+23206340 T^{2} - 10212 T + 23206340 Copy content Toggle raw display
3131 T2+10488T+27301136 T^{2} + 10488 T + 27301136 Copy content Toggle raw display
3737 T213148T12778940 T^{2} - 13148 T - 12778940 Copy content Toggle raw display
4141 T24164T15505276 T^{2} - 4164 T - 15505276 Copy content Toggle raw display
4343 T25832T125615344 T^{2} - 5832 T - 125615344 Copy content Toggle raw display
4747 T2+1520T310545344 T^{2} + 1520 T - 310545344 Copy content Toggle raw display
5353 T29012T19701340 T^{2} - 9012 T - 19701340 Copy content Toggle raw display
5959 T255096T+388630288 T^{2} - 55096 T + 388630288 Copy content Toggle raw display
6161 T2+63444T+988000740 T^{2} + 63444 T + 988000740 Copy content Toggle raw display
6767 T2+1551497968 T^{2} + \cdots - 1551497968 Copy content Toggle raw display
7171 T2+1167829760 T^{2} + \cdots - 1167829760 Copy content Toggle raw display
7373 T2+2060240220 T^{2} + \cdots - 2060240220 Copy content Toggle raw display
7979 T2++4557502736 T^{2} + \cdots + 4557502736 Copy content Toggle raw display
8383 T2++2593974672 T^{2} + \cdots + 2593974672 Copy content Toggle raw display
8989 T2+2331558940 T^{2} + \cdots - 2331558940 Copy content Toggle raw display
9797 T2++1164856516 T^{2} + \cdots + 1164856516 Copy content Toggle raw display
show more
show less