L(s) = 1 | + (0.707 + 0.707i)3-s + (−0.489 + 2.18i)5-s + (−0.692 + 0.692i)7-s + 1.00i·9-s + 0.979i·11-s + (−3.49 + 3.49i)13-s + (−1.88 + 1.19i)15-s + (−2.67 − 2.67i)17-s + 3.34·19-s − 0.979·21-s + (−3.80 − 3.80i)23-s + (−4.52 − 2.13i)25-s + (−0.707 + 0.707i)27-s + 3.74i·29-s + 4i·31-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (−0.218 + 0.975i)5-s + (−0.261 + 0.261i)7-s + 0.333i·9-s + 0.295i·11-s + (−0.970 + 0.970i)13-s + (−0.487 + 0.308i)15-s + (−0.647 − 0.647i)17-s + 0.766·19-s − 0.213·21-s + (−0.793 − 0.793i)23-s + (−0.904 − 0.427i)25-s + (−0.136 + 0.136i)27-s + 0.696i·29-s + 0.718i·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(−0.899−0.437i)Λ(2−s)
Λ(s)=(=(960s/2ΓC(s+1/2)L(s)(−0.899−0.437i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
−0.899−0.437i
|
Analytic conductor: |
7.66563 |
Root analytic conductor: |
2.76868 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :1/2), −0.899−0.437i)
|
Particular Values
L(1) |
≈ |
0.241133+1.04745i |
L(21) |
≈ |
0.241133+1.04745i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.707−0.707i)T |
| 5 | 1+(0.489−2.18i)T |
good | 7 | 1+(0.692−0.692i)T−7iT2 |
| 11 | 1−0.979iT−11T2 |
| 13 | 1+(3.49−3.49i)T−13iT2 |
| 17 | 1+(2.67+2.67i)T+17iT2 |
| 19 | 1−3.34T+19T2 |
| 23 | 1+(3.80+3.80i)T+23iT2 |
| 29 | 1−3.74iT−29T2 |
| 31 | 1−4iT−31T2 |
| 37 | 1+(4.11+4.11i)T+37iT2 |
| 41 | 1+3.34T+41T2 |
| 43 | 1+(−8.21−8.21i)T+43iT2 |
| 47 | 1+(−9.19+9.19i)T−47iT2 |
| 53 | 1+(7.34−7.34i)T−53iT2 |
| 59 | 1+11.3T+59T2 |
| 61 | 1+1.68T+61T2 |
| 67 | 1+(−4.51+4.51i)T−67iT2 |
| 71 | 1−5.65iT−71T2 |
| 73 | 1+(6.34−6.34i)T−73iT2 |
| 79 | 1−16.3T+79T2 |
| 83 | 1+(4.91+4.91i)T+83iT2 |
| 89 | 1−12.6iT−89T2 |
| 97 | 1+(−6.38−6.38i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.35602714572487020209217958250, −9.487618455469444510078292169020, −8.970133904857321543436862355530, −7.70811464512400583341889790871, −7.09730545231708826423991195701, −6.26804303203317932239052736942, −4.98915553513101434659995378836, −4.10869803107703551251500265463, −2.98456462461537860111860472508, −2.18147062189300053246221555894,
0.44874906152874954872764080781, 1.91859151830482869388918488735, 3.25590854521229980881805712197, 4.25598821670320177750176298891, 5.33271967963995559407952306434, 6.16868069353769778178165174728, 7.47574482251521427865830322329, 7.87916994497391140027590366070, 8.806141776581272841213841139244, 9.577440928128243345534759624903