Properties

Label 960.2.w.f
Level 960960
Weight 22
Character orbit 960.w
Analytic conductor 7.6667.666
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,2,Mod(127,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 960=2635 960 = 2^{6} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 960.w (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.665638594047.66563859404
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(i)\Q(i)
Coefficient field: 8.0.1698758656.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+18x6+97x4+176x2+64 x^{8} + 18x^{6} + 97x^{4} + 176x^{2} + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β3q3+β4q5+(β6+β5+β3++1)q7β5q9+(β7β6+β1)q11+(β7+2β5+β4++2)q13++(β4β2)q99+O(q100) q + \beta_{3} q^{3} + \beta_{4} q^{5} + (\beta_{6} + \beta_{5} + \beta_{3} + \cdots + 1) q^{7} - \beta_{5} q^{9} + ( - \beta_{7} - \beta_{6} + \cdots - \beta_1) q^{11} + ( - \beta_{7} + 2 \beta_{5} + \beta_{4} + \cdots + 2) q^{13}+ \cdots + (\beta_{4} - \beta_{2}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q7+12q13+4q154q178q194q25+4q3332q3512q3724q39+8q41+24q434q45+24q474q534q558q57+16q59++32q97+O(q100) 8 q + 4 q^{7} + 12 q^{13} + 4 q^{15} - 4 q^{17} - 8 q^{19} - 4 q^{25} + 4 q^{33} - 32 q^{35} - 12 q^{37} - 24 q^{39} + 8 q^{41} + 24 q^{43} - 4 q^{45} + 24 q^{47} - 4 q^{53} - 4 q^{55} - 8 q^{57} + 16 q^{59}+ \cdots + 32 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+18x6+97x4+176x2+64 x^{8} + 18x^{6} + 97x^{4} + 176x^{2} + 64 : Copy content Toggle raw display

β1\beta_{1}== (ν7+2ν6+18ν5+28ν4+89ν3+74ν2+104ν16)/64 ( \nu^{7} + 2\nu^{6} + 18\nu^{5} + 28\nu^{4} + 89\nu^{3} + 74\nu^{2} + 104\nu - 16 ) / 64 Copy content Toggle raw display
β2\beta_{2}== (ν7+18ν5+8ν4+105ν3+72ν2+248ν+64)/64 ( \nu^{7} + 18\nu^{5} + 8\nu^{4} + 105\nu^{3} + 72\nu^{2} + 248\nu + 64 ) / 64 Copy content Toggle raw display
β3\beta_{3}== (ν72ν6+18ν528ν4+89ν374ν2+104ν+16)/64 ( \nu^{7} - 2\nu^{6} + 18\nu^{5} - 28\nu^{4} + 89\nu^{3} - 74\nu^{2} + 104\nu + 16 ) / 64 Copy content Toggle raw display
β4\beta_{4}== (ν7+18ν58ν4+105ν372ν2+248ν64)/64 ( \nu^{7} + 18\nu^{5} - 8\nu^{4} + 105\nu^{3} - 72\nu^{2} + 248\nu - 64 ) / 64 Copy content Toggle raw display
β5\beta_{5}== (3ν746ν5179ν3168ν)/64 ( -3\nu^{7} - 46\nu^{5} - 179\nu^{3} - 168\nu ) / 64 Copy content Toggle raw display
β6\beta_{6}== (ν76ν6+10ν592ν415ν3358ν2120ν336)/64 ( \nu^{7} - 6\nu^{6} + 10\nu^{5} - 92\nu^{4} - 15\nu^{3} - 358\nu^{2} - 120\nu - 336 ) / 64 Copy content Toggle raw display
β7\beta_{7}== (ν7+6ν6+10ν5+92ν415ν3+358ν2120ν+336)/64 ( \nu^{7} + 6\nu^{6} + 10\nu^{5} + 92\nu^{4} - 15\nu^{3} + 358\nu^{2} - 120\nu + 336 ) / 64 Copy content Toggle raw display
ν\nu== (β7+β6+2β5+β4+β3+β2+β1)/2 ( \beta_{7} + \beta_{6} + 2\beta_{5} + \beta_{4} + \beta_{3} + \beta_{2} + \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β7β6+β4+3β3β23β110)/2 ( \beta_{7} - \beta_{6} + \beta_{4} + 3\beta_{3} - \beta_{2} - 3\beta _1 - 10 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (9β79β618β55β413β35β213β1)/2 ( -9\beta_{7} - 9\beta_{6} - 18\beta_{5} - 5\beta_{4} - 13\beta_{3} - 5\beta_{2} - 13\beta_1 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (9β7+9β617β427β3+17β2+27β1+74)/2 ( -9\beta_{7} + 9\beta_{6} - 17\beta_{4} - 27\beta_{3} + 17\beta_{2} + 27\beta _1 + 74 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (81β7+81β6+178β5+37β4+149β3+37β2+149β1)/2 ( 81\beta_{7} + 81\beta_{6} + 178\beta_{5} + 37\beta_{4} + 149\beta_{3} + 37\beta_{2} + 149\beta_1 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (89β789β6+201β4+235β3201β2235β1650)/2 ( 89\beta_{7} - 89\beta_{6} + 201\beta_{4} + 235\beta_{3} - 201\beta_{2} - 235\beta _1 - 650 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (761β7761β61810β5325β41565β3325β21565β1)/2 ( -761\beta_{7} - 761\beta_{6} - 1810\beta_{5} - 325\beta_{4} - 1565\beta_{3} - 325\beta_{2} - 1565\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/960Z)×\left(\mathbb{Z}/960\mathbb{Z}\right)^\times.

nn 511511 577577 641641 901901
χ(n)\chi(n) 1-1 β5-\beta_{5} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
127.1
3.16053i
2.16053i
0.692297i
1.69230i
3.16053i
2.16053i
0.692297i
1.69230i
0 −0.707107 0.707107i 0 −2.23483 + 0.0743018i 0 3.16053 3.16053i 0 1.00000i 0
127.2 0 −0.707107 0.707107i 0 1.52773 + 1.63280i 0 −2.16053 + 2.16053i 0 1.00000i 0
127.3 0 0.707107 + 0.707107i 0 −0.489528 + 2.18183i 0 −0.692297 + 0.692297i 0 1.00000i 0
127.4 0 0.707107 + 0.707107i 0 1.19663 1.88893i 0 1.69230 1.69230i 0 1.00000i 0
703.1 0 −0.707107 + 0.707107i 0 −2.23483 0.0743018i 0 3.16053 + 3.16053i 0 1.00000i 0
703.2 0 −0.707107 + 0.707107i 0 1.52773 1.63280i 0 −2.16053 2.16053i 0 1.00000i 0
703.3 0 0.707107 0.707107i 0 −0.489528 2.18183i 0 −0.692297 0.692297i 0 1.00000i 0
703.4 0 0.707107 0.707107i 0 1.19663 + 1.88893i 0 1.69230 + 1.69230i 0 1.00000i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 127.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.2.w.f 8
4.b odd 2 1 960.2.w.e 8
5.c odd 4 1 960.2.w.e 8
8.b even 2 1 480.2.w.d yes 8
8.d odd 2 1 480.2.w.c 8
20.e even 4 1 inner 960.2.w.f 8
24.f even 2 1 1440.2.x.q 8
24.h odd 2 1 1440.2.x.r 8
40.e odd 2 1 2400.2.w.j 8
40.f even 2 1 2400.2.w.i 8
40.i odd 4 1 480.2.w.c 8
40.i odd 4 1 2400.2.w.j 8
40.k even 4 1 480.2.w.d yes 8
40.k even 4 1 2400.2.w.i 8
120.q odd 4 1 1440.2.x.r 8
120.w even 4 1 1440.2.x.q 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.2.w.c 8 8.d odd 2 1
480.2.w.c 8 40.i odd 4 1
480.2.w.d yes 8 8.b even 2 1
480.2.w.d yes 8 40.k even 4 1
960.2.w.e 8 4.b odd 2 1
960.2.w.e 8 5.c odd 4 1
960.2.w.f 8 1.a even 1 1 trivial
960.2.w.f 8 20.e even 4 1 inner
1440.2.x.q 8 24.f even 2 1
1440.2.x.q 8 120.w even 4 1
1440.2.x.r 8 24.h odd 2 1
1440.2.x.r 8 120.q odd 4 1
2400.2.w.i 8 40.f even 2 1
2400.2.w.i 8 40.k even 4 1
2400.2.w.j 8 40.e odd 2 1
2400.2.w.j 8 40.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T784T77+8T76+24T75+132T74320T73+512T72+1024T7+1024 T_{7}^{8} - 4T_{7}^{7} + 8T_{7}^{6} + 24T_{7}^{5} + 132T_{7}^{4} - 320T_{7}^{3} + 512T_{7}^{2} + 1024T_{7} + 1024 acting on S2new(960,[χ])S_{2}^{\mathrm{new}}(960, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
55 T8+2T6++625 T^{8} + 2 T^{6} + \cdots + 625 Copy content Toggle raw display
77 T84T7++1024 T^{8} - 4 T^{7} + \cdots + 1024 Copy content Toggle raw display
1111 T8+36T6++1024 T^{8} + 36 T^{6} + \cdots + 1024 Copy content Toggle raw display
1313 T812T7++141376 T^{8} - 12 T^{7} + \cdots + 141376 Copy content Toggle raw display
1717 T8+4T7++64 T^{8} + 4 T^{7} + \cdots + 64 Copy content Toggle raw display
1919 (T4+4T3++128)2 (T^{4} + 4 T^{3} + \cdots + 128)^{2} Copy content Toggle raw display
2323 T8+192T5++4096 T^{8} + 192 T^{5} + \cdots + 4096 Copy content Toggle raw display
2929 T8+196T6++2458624 T^{8} + 196 T^{6} + \cdots + 2458624 Copy content Toggle raw display
3131 (T2+16)4 (T^{2} + 16)^{4} Copy content Toggle raw display
3737 T8+12T7++4426816 T^{8} + 12 T^{7} + \cdots + 4426816 Copy content Toggle raw display
4141 (T44T3++128)2 (T^{4} - 4 T^{3} + \cdots + 128)^{2} Copy content Toggle raw display
4343 T824T7++10240000 T^{8} - 24 T^{7} + \cdots + 10240000 Copy content Toggle raw display
4747 T824T7++4096 T^{8} - 24 T^{7} + \cdots + 4096 Copy content Toggle raw display
5353 T8+4T7++8111104 T^{8} + 4 T^{7} + \cdots + 8111104 Copy content Toggle raw display
5959 (T48T3+2848)2 (T^{4} - 8 T^{3} + \cdots - 2848)^{2} Copy content Toggle raw display
6161 (T4+12T3+1600)2 (T^{4} + 12 T^{3} + \cdots - 1600)^{2} Copy content Toggle raw display
6767 T824T7++36192256 T^{8} - 24 T^{7} + \cdots + 36192256 Copy content Toggle raw display
7171 (T2+32)4 (T^{2} + 32)^{4} Copy content Toggle raw display
7373 T8+16T7++795664 T^{8} + 16 T^{7} + \cdots + 795664 Copy content Toggle raw display
7979 (T48T3++2048)2 (T^{4} - 8 T^{3} + \cdots + 2048)^{2} Copy content Toggle raw display
8383 T8+16T7++6885376 T^{8} + 16 T^{7} + \cdots + 6885376 Copy content Toggle raw display
8989 T8+584T6++154157056 T^{8} + 584 T^{6} + \cdots + 154157056 Copy content Toggle raw display
9797 T832T7++258064 T^{8} - 32 T^{7} + \cdots + 258064 Copy content Toggle raw display
show more
show less