Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [960,2,Mod(127,960)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(960, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("960.127");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 960.w (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 8.0.1698758656.6 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 480) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
127.1 |
|
0 | −0.707107 | − | 0.707107i | 0 | −2.23483 | + | 0.0743018i | 0 | 3.16053 | − | 3.16053i | 0 | 1.00000i | 0 | ||||||||||||||||||||||||||||||||||||
127.2 | 0 | −0.707107 | − | 0.707107i | 0 | 1.52773 | + | 1.63280i | 0 | −2.16053 | + | 2.16053i | 0 | 1.00000i | 0 | |||||||||||||||||||||||||||||||||||||
127.3 | 0 | 0.707107 | + | 0.707107i | 0 | −0.489528 | + | 2.18183i | 0 | −0.692297 | + | 0.692297i | 0 | 1.00000i | 0 | |||||||||||||||||||||||||||||||||||||
127.4 | 0 | 0.707107 | + | 0.707107i | 0 | 1.19663 | − | 1.88893i | 0 | 1.69230 | − | 1.69230i | 0 | 1.00000i | 0 | |||||||||||||||||||||||||||||||||||||
703.1 | 0 | −0.707107 | + | 0.707107i | 0 | −2.23483 | − | 0.0743018i | 0 | 3.16053 | + | 3.16053i | 0 | − | 1.00000i | 0 | ||||||||||||||||||||||||||||||||||||
703.2 | 0 | −0.707107 | + | 0.707107i | 0 | 1.52773 | − | 1.63280i | 0 | −2.16053 | − | 2.16053i | 0 | − | 1.00000i | 0 | ||||||||||||||||||||||||||||||||||||
703.3 | 0 | 0.707107 | − | 0.707107i | 0 | −0.489528 | − | 2.18183i | 0 | −0.692297 | − | 0.692297i | 0 | − | 1.00000i | 0 | ||||||||||||||||||||||||||||||||||||
703.4 | 0 | 0.707107 | − | 0.707107i | 0 | 1.19663 | + | 1.88893i | 0 | 1.69230 | + | 1.69230i | 0 | − | 1.00000i | 0 | ||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
20.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 960.2.w.f | 8 | |
4.b | odd | 2 | 1 | 960.2.w.e | 8 | ||
5.c | odd | 4 | 1 | 960.2.w.e | 8 | ||
8.b | even | 2 | 1 | 480.2.w.d | yes | 8 | |
8.d | odd | 2 | 1 | 480.2.w.c | ✓ | 8 | |
20.e | even | 4 | 1 | inner | 960.2.w.f | 8 | |
24.f | even | 2 | 1 | 1440.2.x.q | 8 | ||
24.h | odd | 2 | 1 | 1440.2.x.r | 8 | ||
40.e | odd | 2 | 1 | 2400.2.w.j | 8 | ||
40.f | even | 2 | 1 | 2400.2.w.i | 8 | ||
40.i | odd | 4 | 1 | 480.2.w.c | ✓ | 8 | |
40.i | odd | 4 | 1 | 2400.2.w.j | 8 | ||
40.k | even | 4 | 1 | 480.2.w.d | yes | 8 | |
40.k | even | 4 | 1 | 2400.2.w.i | 8 | ||
120.q | odd | 4 | 1 | 1440.2.x.r | 8 | ||
120.w | even | 4 | 1 | 1440.2.x.q | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
480.2.w.c | ✓ | 8 | 8.d | odd | 2 | 1 | |
480.2.w.c | ✓ | 8 | 40.i | odd | 4 | 1 | |
480.2.w.d | yes | 8 | 8.b | even | 2 | 1 | |
480.2.w.d | yes | 8 | 40.k | even | 4 | 1 | |
960.2.w.e | 8 | 4.b | odd | 2 | 1 | ||
960.2.w.e | 8 | 5.c | odd | 4 | 1 | ||
960.2.w.f | 8 | 1.a | even | 1 | 1 | trivial | |
960.2.w.f | 8 | 20.e | even | 4 | 1 | inner | |
1440.2.x.q | 8 | 24.f | even | 2 | 1 | ||
1440.2.x.q | 8 | 120.w | even | 4 | 1 | ||
1440.2.x.r | 8 | 24.h | odd | 2 | 1 | ||
1440.2.x.r | 8 | 120.q | odd | 4 | 1 | ||
2400.2.w.i | 8 | 40.f | even | 2 | 1 | ||
2400.2.w.i | 8 | 40.k | even | 4 | 1 | ||
2400.2.w.j | 8 | 40.e | odd | 2 | 1 | ||
2400.2.w.j | 8 | 40.i | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .