L(s) = 1 | + (−0.707 − 0.707i)3-s + (−2.23 + 0.0743i)5-s + (3.16 − 3.16i)7-s + 1.00i·9-s + 4.46i·11-s + (2.51 − 2.51i)13-s + (1.63 + 1.52i)15-s + (−2.30 − 2.30i)17-s + 2.61·19-s − 4.46·21-s + (−1.64 − 1.64i)23-s + (4.98 − 0.332i)25-s + (0.707 − 0.707i)27-s − 8.17i·29-s + 4i·31-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (−0.999 + 0.0332i)5-s + (1.19 − 1.19i)7-s + 0.333i·9-s + 1.34i·11-s + (0.698 − 0.698i)13-s + (0.421 + 0.394i)15-s + (−0.560 − 0.560i)17-s + 0.600·19-s − 0.975·21-s + (−0.342 − 0.342i)23-s + (0.997 − 0.0664i)25-s + (0.136 − 0.136i)27-s − 1.51i·29-s + 0.718i·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(−0.197+0.980i)Λ(2−s)
Λ(s)=(=(960s/2ΓC(s+1/2)L(s)(−0.197+0.980i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
−0.197+0.980i
|
Analytic conductor: |
7.66563 |
Root analytic conductor: |
2.76868 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :1/2), −0.197+0.980i)
|
Particular Values
L(1) |
≈ |
0.703746−0.859477i |
L(21) |
≈ |
0.703746−0.859477i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.707+0.707i)T |
| 5 | 1+(2.23−0.0743i)T |
good | 7 | 1+(−3.16+3.16i)T−7iT2 |
| 11 | 1−4.46iT−11T2 |
| 13 | 1+(−2.51+2.51i)T−13iT2 |
| 17 | 1+(2.30+2.30i)T+17iT2 |
| 19 | 1−2.61T+19T2 |
| 23 | 1+(1.64+1.64i)T+23iT2 |
| 29 | 1+8.17iT−29T2 |
| 31 | 1−4iT−31T2 |
| 37 | 1+(5.80+5.80i)T+37iT2 |
| 41 | 1+2.61T+41T2 |
| 43 | 1+(5.14+5.14i)T+43iT2 |
| 47 | 1+(0.679−0.679i)T−47iT2 |
| 53 | 1+(−7.81+7.81i)T−53iT2 |
| 59 | 1−4.88T+59T2 |
| 61 | 1+12.2T+61T2 |
| 67 | 1+(−9.44+9.44i)T−67iT2 |
| 71 | 1+5.65iT−71T2 |
| 73 | 1+(5.61−5.61i)T−73iT2 |
| 79 | 1−3.57T+79T2 |
| 83 | 1+(−1.34−1.34i)T+83iT2 |
| 89 | 1+17.6iT−89T2 |
| 97 | 1+(1.32+1.32i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.11554480867543963573246022045, −8.706497817599969886070746937079, −7.85125885345038956262024146903, −7.38631043797840178535730385539, −6.67910141701796140906758451523, −5.18482845237374683992105777920, −4.52026210868024488349177390245, −3.64879607809458234361577461822, −1.93546302058491607081430974221, −0.59854138231452478268799427676,
1.44073051550183293578680039389, 3.09460265800754781096187210456, 4.07223776046739447925817503558, 5.06014328972212870665761501087, 5.78614924605767960986165757100, 6.79202809380029193145178164342, 8.063731809879568541342581687618, 8.575549994594952268886533131640, 9.126776187764919180585604854745, 10.57821360115196087652278996867