L(s) = 1 | + (−0.707 − 0.707i)3-s + (−2.23 + 0.0743i)5-s + (3.16 − 3.16i)7-s + 1.00i·9-s + 4.46i·11-s + (2.51 − 2.51i)13-s + (1.63 + 1.52i)15-s + (−2.30 − 2.30i)17-s + 2.61·19-s − 4.46·21-s + (−1.64 − 1.64i)23-s + (4.98 − 0.332i)25-s + (0.707 − 0.707i)27-s − 8.17i·29-s + 4i·31-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (−0.999 + 0.0332i)5-s + (1.19 − 1.19i)7-s + 0.333i·9-s + 1.34i·11-s + (0.698 − 0.698i)13-s + (0.421 + 0.394i)15-s + (−0.560 − 0.560i)17-s + 0.600·19-s − 0.975·21-s + (−0.342 − 0.342i)23-s + (0.997 − 0.0664i)25-s + (0.136 − 0.136i)27-s − 1.51i·29-s + 0.718i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.197 + 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.197 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.703746 - 0.859477i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.703746 - 0.859477i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 + (2.23 - 0.0743i)T \) |
good | 7 | \( 1 + (-3.16 + 3.16i)T - 7iT^{2} \) |
| 11 | \( 1 - 4.46iT - 11T^{2} \) |
| 13 | \( 1 + (-2.51 + 2.51i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.30 + 2.30i)T + 17iT^{2} \) |
| 19 | \( 1 - 2.61T + 19T^{2} \) |
| 23 | \( 1 + (1.64 + 1.64i)T + 23iT^{2} \) |
| 29 | \( 1 + 8.17iT - 29T^{2} \) |
| 31 | \( 1 - 4iT - 31T^{2} \) |
| 37 | \( 1 + (5.80 + 5.80i)T + 37iT^{2} \) |
| 41 | \( 1 + 2.61T + 41T^{2} \) |
| 43 | \( 1 + (5.14 + 5.14i)T + 43iT^{2} \) |
| 47 | \( 1 + (0.679 - 0.679i)T - 47iT^{2} \) |
| 53 | \( 1 + (-7.81 + 7.81i)T - 53iT^{2} \) |
| 59 | \( 1 - 4.88T + 59T^{2} \) |
| 61 | \( 1 + 12.2T + 61T^{2} \) |
| 67 | \( 1 + (-9.44 + 9.44i)T - 67iT^{2} \) |
| 71 | \( 1 + 5.65iT - 71T^{2} \) |
| 73 | \( 1 + (5.61 - 5.61i)T - 73iT^{2} \) |
| 79 | \( 1 - 3.57T + 79T^{2} \) |
| 83 | \( 1 + (-1.34 - 1.34i)T + 83iT^{2} \) |
| 89 | \( 1 + 17.6iT - 89T^{2} \) |
| 97 | \( 1 + (1.32 + 1.32i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11554480867543963573246022045, −8.706497817599969886070746937079, −7.85125885345038956262024146903, −7.38631043797840178535730385539, −6.67910141701796140906758451523, −5.18482845237374683992105777920, −4.52026210868024488349177390245, −3.64879607809458234361577461822, −1.93546302058491607081430974221, −0.59854138231452478268799427676,
1.44073051550183293578680039389, 3.09460265800754781096187210456, 4.07223776046739447925817503558, 5.06014328972212870665761501087, 5.78614924605767960986165757100, 6.79202809380029193145178164342, 8.063731809879568541342581687618, 8.575549994594952268886533131640, 9.126776187764919180585604854745, 10.57821360115196087652278996867