Properties

Label 960.2.w.f.127.1
Level $960$
Weight $2$
Character 960.127
Analytic conductor $7.666$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,2,Mod(127,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.w (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.1698758656.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 18x^{6} + 97x^{4} + 176x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 127.1
Root \(-3.16053i\) of defining polynomial
Character \(\chi\) \(=\) 960.127
Dual form 960.2.w.f.703.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(-2.23483 + 0.0743018i) q^{5} +(3.16053 - 3.16053i) q^{7} +1.00000i q^{9} +O(q^{10})\) \(q+(-0.707107 - 0.707107i) q^{3} +(-2.23483 + 0.0743018i) q^{5} +(3.16053 - 3.16053i) q^{7} +1.00000i q^{9} +4.46967i q^{11} +(2.51929 - 2.51929i) q^{13} +(1.63280 + 1.52773i) q^{15} +(-2.30913 - 2.30913i) q^{17} +2.61827 q^{19} -4.46967 q^{21} +(-1.64124 - 1.64124i) q^{23} +(4.98896 - 0.332104i) q^{25} +(0.707107 - 0.707107i) q^{27} -8.17246i q^{29} +4.00000i q^{31} +(3.16053 - 3.16053i) q^{33} +(-6.82843 + 7.29809i) q^{35} +(-5.80177 - 5.80177i) q^{37} -3.56282 q^{39} -2.61827 q^{41} +(-5.14949 - 5.14949i) q^{43} +(-0.0743018 - 2.23483i) q^{45} +(-0.679824 + 0.679824i) q^{47} -12.9779i q^{49} +3.26561i q^{51} +(7.81739 - 7.81739i) q^{53} +(-0.332104 - 9.98896i) q^{55} +(-1.85140 - 1.85140i) q^{57} +4.88998 q^{59} -12.2751 q^{61} +(3.16053 + 3.16053i) q^{63} +(-5.44301 + 5.81739i) q^{65} +(9.44670 - 9.44670i) q^{67} +2.32106i q^{69} -5.65685i q^{71} +(-5.61827 + 5.61827i) q^{73} +(-3.76256 - 3.29289i) q^{75} +(14.1265 + 14.1265i) q^{77} +3.57969 q^{79} -1.00000 q^{81} +(1.34403 + 1.34403i) q^{83} +(5.33210 + 4.98896i) q^{85} +(-5.77880 + 5.77880i) q^{87} -17.6348i q^{89} -15.9246i q^{91} +(2.82843 - 2.82843i) q^{93} +(-5.85140 + 0.194542i) q^{95} +(-1.32106 - 1.32106i) q^{97} -4.46967 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{7} + 12 q^{13} + 4 q^{15} - 4 q^{17} - 8 q^{19} - 4 q^{25} + 4 q^{33} - 32 q^{35} - 12 q^{37} - 24 q^{39} + 8 q^{41} + 24 q^{43} - 4 q^{45} + 24 q^{47} - 4 q^{53} - 4 q^{55} - 8 q^{57} + 16 q^{59} - 24 q^{61} + 4 q^{63} + 4 q^{65} + 24 q^{67} - 16 q^{73} + 32 q^{77} + 16 q^{79} - 8 q^{81} - 16 q^{83} + 44 q^{85} + 4 q^{87} - 40 q^{95} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) −2.23483 + 0.0743018i −0.999448 + 0.0332288i
\(6\) 0 0
\(7\) 3.16053 3.16053i 1.19457 1.19457i 0.218799 0.975770i \(-0.429786\pi\)
0.975770 0.218799i \(-0.0702137\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 4.46967i 1.34766i 0.738889 + 0.673828i \(0.235351\pi\)
−0.738889 + 0.673828i \(0.764649\pi\)
\(12\) 0 0
\(13\) 2.51929 2.51929i 0.698726 0.698726i −0.265410 0.964136i \(-0.585507\pi\)
0.964136 + 0.265410i \(0.0855072\pi\)
\(14\) 0 0
\(15\) 1.63280 + 1.52773i 0.421588 + 0.394457i
\(16\) 0 0
\(17\) −2.30913 2.30913i −0.560047 0.560047i 0.369273 0.929321i \(-0.379607\pi\)
−0.929321 + 0.369273i \(0.879607\pi\)
\(18\) 0 0
\(19\) 2.61827 0.600672 0.300336 0.953833i \(-0.402901\pi\)
0.300336 + 0.953833i \(0.402901\pi\)
\(20\) 0 0
\(21\) −4.46967 −0.975361
\(22\) 0 0
\(23\) −1.64124 1.64124i −0.342222 0.342222i 0.514980 0.857202i \(-0.327799\pi\)
−0.857202 + 0.514980i \(0.827799\pi\)
\(24\) 0 0
\(25\) 4.98896 0.332104i 0.997792 0.0664208i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 8.17246i 1.51759i −0.651331 0.758794i \(-0.725789\pi\)
0.651331 0.758794i \(-0.274211\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) 0 0
\(33\) 3.16053 3.16053i 0.550178 0.550178i
\(34\) 0 0
\(35\) −6.82843 + 7.29809i −1.15421 + 1.23360i
\(36\) 0 0
\(37\) −5.80177 5.80177i −0.953805 0.953805i 0.0451739 0.998979i \(-0.485616\pi\)
−0.998979 + 0.0451739i \(0.985616\pi\)
\(38\) 0 0
\(39\) −3.56282 −0.570507
\(40\) 0 0
\(41\) −2.61827 −0.408905 −0.204453 0.978876i \(-0.565541\pi\)
−0.204453 + 0.978876i \(0.565541\pi\)
\(42\) 0 0
\(43\) −5.14949 5.14949i −0.785290 0.785290i 0.195428 0.980718i \(-0.437390\pi\)
−0.980718 + 0.195428i \(0.937390\pi\)
\(44\) 0 0
\(45\) −0.0743018 2.23483i −0.0110763 0.333149i
\(46\) 0 0
\(47\) −0.679824 + 0.679824i −0.0991625 + 0.0991625i −0.754948 0.655785i \(-0.772338\pi\)
0.655785 + 0.754948i \(0.272338\pi\)
\(48\) 0 0
\(49\) 12.9779i 1.85399i
\(50\) 0 0
\(51\) 3.26561i 0.457277i
\(52\) 0 0
\(53\) 7.81739 7.81739i 1.07380 1.07380i 0.0767501 0.997050i \(-0.475546\pi\)
0.997050 0.0767501i \(-0.0244544\pi\)
\(54\) 0 0
\(55\) −0.332104 9.98896i −0.0447809 1.34691i
\(56\) 0 0
\(57\) −1.85140 1.85140i −0.245223 0.245223i
\(58\) 0 0
\(59\) 4.88998 0.636621 0.318311 0.947986i \(-0.396885\pi\)
0.318311 + 0.947986i \(0.396885\pi\)
\(60\) 0 0
\(61\) −12.2751 −1.57167 −0.785834 0.618437i \(-0.787766\pi\)
−0.785834 + 0.618437i \(0.787766\pi\)
\(62\) 0 0
\(63\) 3.16053 + 3.16053i 0.398190 + 0.398190i
\(64\) 0 0
\(65\) −5.44301 + 5.81739i −0.675122 + 0.721558i
\(66\) 0 0
\(67\) 9.44670 9.44670i 1.15410 1.15410i 0.168375 0.985723i \(-0.446148\pi\)
0.985723 0.168375i \(-0.0538518\pi\)
\(68\) 0 0
\(69\) 2.32106i 0.279423i
\(70\) 0 0
\(71\) 5.65685i 0.671345i −0.941979 0.335673i \(-0.891036\pi\)
0.941979 0.335673i \(-0.108964\pi\)
\(72\) 0 0
\(73\) −5.61827 + 5.61827i −0.657569 + 0.657569i −0.954804 0.297235i \(-0.903935\pi\)
0.297235 + 0.954804i \(0.403935\pi\)
\(74\) 0 0
\(75\) −3.76256 3.29289i −0.434463 0.380231i
\(76\) 0 0
\(77\) 14.1265 + 14.1265i 1.60987 + 1.60987i
\(78\) 0 0
\(79\) 3.57969 0.402746 0.201373 0.979515i \(-0.435460\pi\)
0.201373 + 0.979515i \(0.435460\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 1.34403 + 1.34403i 0.147527 + 0.147527i 0.777012 0.629486i \(-0.216734\pi\)
−0.629486 + 0.777012i \(0.716734\pi\)
\(84\) 0 0
\(85\) 5.33210 + 4.98896i 0.578348 + 0.541129i
\(86\) 0 0
\(87\) −5.77880 + 5.77880i −0.619553 + 0.619553i
\(88\) 0 0
\(89\) 17.6348i 1.86928i −0.355593 0.934641i \(-0.615721\pi\)
0.355593 0.934641i \(-0.384279\pi\)
\(90\) 0 0
\(91\) 15.9246i 1.66935i
\(92\) 0 0
\(93\) 2.82843 2.82843i 0.293294 0.293294i
\(94\) 0 0
\(95\) −5.85140 + 0.194542i −0.600341 + 0.0199596i
\(96\) 0 0
\(97\) −1.32106 1.32106i −0.134134 0.134134i 0.636852 0.770986i \(-0.280236\pi\)
−0.770986 + 0.636852i \(0.780236\pi\)
\(98\) 0 0
\(99\) −4.46967 −0.449218
\(100\) 0 0
\(101\) 1.47702 0.146969 0.0734845 0.997296i \(-0.476588\pi\)
0.0734845 + 0.997296i \(0.476588\pi\)
\(102\) 0 0
\(103\) 9.11459 + 9.11459i 0.898088 + 0.898088i 0.995267 0.0971794i \(-0.0309821\pi\)
−0.0971794 + 0.995267i \(0.530982\pi\)
\(104\) 0 0
\(105\) 9.98896 0.332104i 0.974823 0.0324101i
\(106\) 0 0
\(107\) 2.06155 2.06155i 0.199298 0.199298i −0.600401 0.799699i \(-0.704992\pi\)
0.799699 + 0.600401i \(0.204992\pi\)
\(108\) 0 0
\(109\) 9.70279i 0.929359i 0.885479 + 0.464679i \(0.153830\pi\)
−0.885479 + 0.464679i \(0.846170\pi\)
\(110\) 0 0
\(111\) 8.20494i 0.778779i
\(112\) 0 0
\(113\) −4.63020 + 4.63020i −0.435572 + 0.435572i −0.890519 0.454946i \(-0.849658\pi\)
0.454946 + 0.890519i \(0.349658\pi\)
\(114\) 0 0
\(115\) 3.78984 + 3.54595i 0.353405 + 0.330661i
\(116\) 0 0
\(117\) 2.51929 + 2.51929i 0.232909 + 0.232909i
\(118\) 0 0
\(119\) −14.5962 −1.33803
\(120\) 0 0
\(121\) −8.97792 −0.816174
\(122\) 0 0
\(123\) 1.85140 + 1.85140i 0.166935 + 0.166935i
\(124\) 0 0
\(125\) −11.1248 + 1.11289i −0.995034 + 0.0995396i
\(126\) 0 0
\(127\) −10.1991 + 10.1991i −0.905025 + 0.905025i −0.995865 0.0908403i \(-0.971045\pi\)
0.0908403 + 0.995865i \(0.471045\pi\)
\(128\) 0 0
\(129\) 7.28248i 0.641186i
\(130\) 0 0
\(131\) 12.4697i 1.08948i 0.838605 + 0.544740i \(0.183372\pi\)
−0.838605 + 0.544740i \(0.816628\pi\)
\(132\) 0 0
\(133\) 8.27512 8.27512i 0.717544 0.717544i
\(134\) 0 0
\(135\) −1.52773 + 1.63280i −0.131486 + 0.140529i
\(136\) 0 0
\(137\) 4.63020 + 4.63020i 0.395584 + 0.395584i 0.876672 0.481088i \(-0.159758\pi\)
−0.481088 + 0.876672i \(0.659758\pi\)
\(138\) 0 0
\(139\) −3.00735 −0.255080 −0.127540 0.991833i \(-0.540708\pi\)
−0.127540 + 0.991833i \(0.540708\pi\)
\(140\) 0 0
\(141\) 0.961416 0.0809658
\(142\) 0 0
\(143\) 11.2604 + 11.2604i 0.941642 + 0.941642i
\(144\) 0 0
\(145\) 0.607228 + 18.2641i 0.0504276 + 1.51675i
\(146\) 0 0
\(147\) −9.17677 + 9.17677i −0.756887 + 0.756887i
\(148\) 0 0
\(149\) 0.148604i 0.0121741i −0.999981 0.00608704i \(-0.998062\pi\)
0.999981 0.00608704i \(-0.00193758\pi\)
\(150\) 0 0
\(151\) 20.6200i 1.67804i −0.544104 0.839018i \(-0.683130\pi\)
0.544104 0.839018i \(-0.316870\pi\)
\(152\) 0 0
\(153\) 2.30913 2.30913i 0.186682 0.186682i
\(154\) 0 0
\(155\) −0.297207 8.93933i −0.0238723 0.718024i
\(156\) 0 0
\(157\) 9.77969 + 9.77969i 0.780504 + 0.780504i 0.979916 0.199412i \(-0.0639031\pi\)
−0.199412 + 0.979916i \(0.563903\pi\)
\(158\) 0 0
\(159\) −11.0555 −0.876754
\(160\) 0 0
\(161\) −10.3744 −0.817615
\(162\) 0 0
\(163\) 10.4081 + 10.4081i 0.815226 + 0.815226i 0.985412 0.170186i \(-0.0544368\pi\)
−0.170186 + 0.985412i \(0.554437\pi\)
\(164\) 0 0
\(165\) −6.82843 + 7.29809i −0.531592 + 0.568156i
\(166\) 0 0
\(167\) 6.06155 6.06155i 0.469057 0.469057i −0.432552 0.901609i \(-0.642387\pi\)
0.901609 + 0.432552i \(0.142387\pi\)
\(168\) 0 0
\(169\) 0.306334i 0.0235641i
\(170\) 0 0
\(171\) 2.61827i 0.200224i
\(172\) 0 0
\(173\) −0.355074 + 0.355074i −0.0269957 + 0.0269957i −0.720476 0.693480i \(-0.756077\pi\)
0.693480 + 0.720476i \(0.256077\pi\)
\(174\) 0 0
\(175\) 14.7181 16.8174i 1.11259 1.27127i
\(176\) 0 0
\(177\) −3.45774 3.45774i −0.259900 0.259900i
\(178\) 0 0
\(179\) 15.7521 1.17737 0.588685 0.808362i \(-0.299646\pi\)
0.588685 + 0.808362i \(0.299646\pi\)
\(180\) 0 0
\(181\) −7.77996 −0.578280 −0.289140 0.957287i \(-0.593369\pi\)
−0.289140 + 0.957287i \(0.593369\pi\)
\(182\) 0 0
\(183\) 8.67982 + 8.67982i 0.641631 + 0.641631i
\(184\) 0 0
\(185\) 13.3971 + 12.5349i 0.984972 + 0.921585i
\(186\) 0 0
\(187\) 10.3211 10.3211i 0.754751 0.754751i
\(188\) 0 0
\(189\) 4.46967i 0.325120i
\(190\) 0 0
\(191\) 9.35965i 0.677240i 0.940923 + 0.338620i \(0.109960\pi\)
−0.940923 + 0.338620i \(0.890040\pi\)
\(192\) 0 0
\(193\) 17.1759 17.1759i 1.23635 1.23635i 0.274863 0.961483i \(-0.411368\pi\)
0.961483 0.274863i \(-0.0886325\pi\)
\(194\) 0 0
\(195\) 7.96230 0.264724i 0.570192 0.0189573i
\(196\) 0 0
\(197\) −1.83947 1.83947i −0.131057 0.131057i 0.638536 0.769592i \(-0.279541\pi\)
−0.769592 + 0.638536i \(0.779541\pi\)
\(198\) 0 0
\(199\) 0.442397 0.0313607 0.0156804 0.999877i \(-0.495009\pi\)
0.0156804 + 0.999877i \(0.495009\pi\)
\(200\) 0 0
\(201\) −13.3596 −0.942317
\(202\) 0 0
\(203\) −25.8293 25.8293i −1.81286 1.81286i
\(204\) 0 0
\(205\) 5.85140 0.194542i 0.408679 0.0135874i
\(206\) 0 0
\(207\) 1.64124 1.64124i 0.114074 0.114074i
\(208\) 0 0
\(209\) 11.7028i 0.809499i
\(210\) 0 0
\(211\) 5.30633i 0.365303i 0.983178 + 0.182652i \(0.0584680\pi\)
−0.983178 + 0.182652i \(0.941532\pi\)
\(212\) 0 0
\(213\) −4.00000 + 4.00000i −0.274075 + 0.274075i
\(214\) 0 0
\(215\) 11.8909 + 11.1256i 0.810950 + 0.758762i
\(216\) 0 0
\(217\) 12.6421 + 12.6421i 0.858203 + 0.858203i
\(218\) 0 0
\(219\) 7.94543 0.536903
\(220\) 0 0
\(221\) −11.6348 −0.782639
\(222\) 0 0
\(223\) −5.48159 5.48159i −0.367075 0.367075i 0.499335 0.866409i \(-0.333578\pi\)
−0.866409 + 0.499335i \(0.833578\pi\)
\(224\) 0 0
\(225\) 0.332104 + 4.98896i 0.0221403 + 0.332597i
\(226\) 0 0
\(227\) −9.51649 + 9.51649i −0.631632 + 0.631632i −0.948477 0.316845i \(-0.897376\pi\)
0.316845 + 0.948477i \(0.397376\pi\)
\(228\) 0 0
\(229\) 5.25862i 0.347500i 0.984790 + 0.173750i \(0.0555884\pi\)
−0.984790 + 0.173750i \(0.944412\pi\)
\(230\) 0 0
\(231\) 19.9779i 1.31445i
\(232\) 0 0
\(233\) 2.92740 2.92740i 0.191781 0.191781i −0.604684 0.796465i \(-0.706701\pi\)
0.796465 + 0.604684i \(0.206701\pi\)
\(234\) 0 0
\(235\) 1.46878 1.56980i 0.0958126 0.102403i
\(236\) 0 0
\(237\) −2.53122 2.53122i −0.164420 0.164420i
\(238\) 0 0
\(239\) 12.6421 0.817751 0.408876 0.912590i \(-0.365921\pi\)
0.408876 + 0.912590i \(0.365921\pi\)
\(240\) 0 0
\(241\) 14.5650 0.938211 0.469106 0.883142i \(-0.344576\pi\)
0.469106 + 0.883142i \(0.344576\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 0.964283 + 29.0035i 0.0616058 + 1.85296i
\(246\) 0 0
\(247\) 6.59619 6.59619i 0.419705 0.419705i
\(248\) 0 0
\(249\) 1.90075i 0.120455i
\(250\) 0 0
\(251\) 18.5468i 1.17067i 0.810793 + 0.585333i \(0.199036\pi\)
−0.810793 + 0.585333i \(0.800964\pi\)
\(252\) 0 0
\(253\) 7.33579 7.33579i 0.461197 0.461197i
\(254\) 0 0
\(255\) −0.242641 7.29809i −0.0151947 0.457024i
\(256\) 0 0
\(257\) 13.2485 + 13.2485i 0.826417 + 0.826417i 0.987019 0.160602i \(-0.0513437\pi\)
−0.160602 + 0.987019i \(0.551344\pi\)
\(258\) 0 0
\(259\) −36.6734 −2.27877
\(260\) 0 0
\(261\) 8.17246 0.505863
\(262\) 0 0
\(263\) −22.5806 22.5806i −1.39238 1.39238i −0.819967 0.572411i \(-0.806008\pi\)
−0.572411 0.819967i \(-0.693992\pi\)
\(264\) 0 0
\(265\) −16.8897 + 18.0514i −1.03753 + 1.10889i
\(266\) 0 0
\(267\) −12.4697 + 12.4697i −0.763131 + 0.763131i
\(268\) 0 0
\(269\) 6.82019i 0.415834i −0.978146 0.207917i \(-0.933332\pi\)
0.978146 0.207917i \(-0.0666684\pi\)
\(270\) 0 0
\(271\) 2.74138i 0.166527i 0.996528 + 0.0832634i \(0.0265343\pi\)
−0.996528 + 0.0832634i \(0.973466\pi\)
\(272\) 0 0
\(273\) −11.2604 + 11.2604i −0.681510 + 0.681510i
\(274\) 0 0
\(275\) 1.48440 + 22.2990i 0.0895124 + 1.34468i
\(276\) 0 0
\(277\) 7.75583 + 7.75583i 0.466003 + 0.466003i 0.900617 0.434614i \(-0.143115\pi\)
−0.434614 + 0.900617i \(0.643115\pi\)
\(278\) 0 0
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) 4.54110 0.270899 0.135450 0.990784i \(-0.456752\pi\)
0.135450 + 0.990784i \(0.456752\pi\)
\(282\) 0 0
\(283\) 7.91295 + 7.91295i 0.470376 + 0.470376i 0.902036 0.431660i \(-0.142072\pi\)
−0.431660 + 0.902036i \(0.642072\pi\)
\(284\) 0 0
\(285\) 4.27512 + 4.00000i 0.253236 + 0.236940i
\(286\) 0 0
\(287\) −8.27512 + 8.27512i −0.488465 + 0.488465i
\(288\) 0 0
\(289\) 6.33579i 0.372694i
\(290\) 0 0
\(291\) 1.86826i 0.109520i
\(292\) 0 0
\(293\) −15.0999 + 15.0999i −0.882143 + 0.882143i −0.993752 0.111609i \(-0.964400\pi\)
0.111609 + 0.993752i \(0.464400\pi\)
\(294\) 0 0
\(295\) −10.9283 + 0.363334i −0.636270 + 0.0211541i
\(296\) 0 0
\(297\) 3.16053 + 3.16053i 0.183393 + 0.183393i
\(298\) 0 0
\(299\) −8.26952 −0.478239
\(300\) 0 0
\(301\) −32.5502 −1.87617
\(302\) 0 0
\(303\) −1.04441 1.04441i −0.0599999 0.0599999i
\(304\) 0 0
\(305\) 27.4329 0.912064i 1.57080 0.0522246i
\(306\) 0 0
\(307\) 4.43197 4.43197i 0.252946 0.252946i −0.569232 0.822177i \(-0.692759\pi\)
0.822177 + 0.569232i \(0.192759\pi\)
\(308\) 0 0
\(309\) 12.8900i 0.733285i
\(310\) 0 0
\(311\) 23.5355i 1.33458i 0.744799 + 0.667288i \(0.232545\pi\)
−0.744799 + 0.667288i \(0.767455\pi\)
\(312\) 0 0
\(313\) −18.6035 + 18.6035i −1.05153 + 1.05153i −0.0529364 + 0.998598i \(0.516858\pi\)
−0.998598 + 0.0529364i \(0.983142\pi\)
\(314\) 0 0
\(315\) −7.29809 6.82843i −0.411201 0.384738i
\(316\) 0 0
\(317\) −7.56953 7.56953i −0.425147 0.425147i 0.461824 0.886971i \(-0.347195\pi\)
−0.886971 + 0.461824i \(0.847195\pi\)
\(318\) 0 0
\(319\) 36.5282 2.04518
\(320\) 0 0
\(321\) −2.91548 −0.162726
\(322\) 0 0
\(323\) −6.04594 6.04594i −0.336405 0.336405i
\(324\) 0 0
\(325\) 11.7320 13.4053i 0.650773 0.743593i
\(326\) 0 0
\(327\) 6.86091 6.86091i 0.379409 0.379409i
\(328\) 0 0
\(329\) 4.29721i 0.236913i
\(330\) 0 0
\(331\) 13.8020i 0.758629i −0.925268 0.379314i \(-0.876160\pi\)
0.925268 0.379314i \(-0.123840\pi\)
\(332\) 0 0
\(333\) 5.80177 5.80177i 0.317935 0.317935i
\(334\) 0 0
\(335\) −20.4099 + 21.8137i −1.11511 + 1.19181i
\(336\) 0 0
\(337\) 10.9541 + 10.9541i 0.596706 + 0.596706i 0.939434 0.342729i \(-0.111351\pi\)
−0.342729 + 0.939434i \(0.611351\pi\)
\(338\) 0 0
\(339\) 6.54809 0.355643
\(340\) 0 0
\(341\) −17.8787 −0.968184
\(342\) 0 0
\(343\) −18.8934 18.8934i −1.02015 1.02015i
\(344\) 0 0
\(345\) −0.172459 5.18719i −0.00928489 0.279269i
\(346\) 0 0
\(347\) 13.3934 13.3934i 0.718995 0.718995i −0.249405 0.968399i \(-0.580235\pi\)
0.968399 + 0.249405i \(0.0802350\pi\)
\(348\) 0 0
\(349\) 21.6035i 1.15641i 0.815891 + 0.578206i \(0.196247\pi\)
−0.815891 + 0.578206i \(0.803753\pi\)
\(350\) 0 0
\(351\) 3.56282i 0.190169i
\(352\) 0 0
\(353\) 25.9678 25.9678i 1.38212 1.38212i 0.541286 0.840839i \(-0.317938\pi\)
0.840839 0.541286i \(-0.182062\pi\)
\(354\) 0 0
\(355\) 0.420314 + 12.6421i 0.0223080 + 0.670974i
\(356\) 0 0
\(357\) 10.3211 + 10.3211i 0.546249 + 0.546249i
\(358\) 0 0
\(359\) 8.93933 0.471800 0.235900 0.971777i \(-0.424196\pi\)
0.235900 + 0.971777i \(0.424196\pi\)
\(360\) 0 0
\(361\) −12.1447 −0.639193
\(362\) 0 0
\(363\) 6.34835 + 6.34835i 0.333202 + 0.333202i
\(364\) 0 0
\(365\) 12.1384 12.9733i 0.635355 0.679056i
\(366\) 0 0
\(367\) −13.7788 + 13.7788i −0.719248 + 0.719248i −0.968451 0.249204i \(-0.919831\pi\)
0.249204 + 0.968451i \(0.419831\pi\)
\(368\) 0 0
\(369\) 2.61827i 0.136302i
\(370\) 0 0
\(371\) 49.4142i 2.56546i
\(372\) 0 0
\(373\) 12.4439 12.4439i 0.644321 0.644321i −0.307294 0.951615i \(-0.599424\pi\)
0.951615 + 0.307294i \(0.0994235\pi\)
\(374\) 0 0
\(375\) 8.65336 + 7.07950i 0.446858 + 0.365584i
\(376\) 0 0
\(377\) −20.5888 20.5888i −1.06038 1.06038i
\(378\) 0 0
\(379\) 34.9190 1.79367 0.896835 0.442366i \(-0.145861\pi\)
0.896835 + 0.442366i \(0.145861\pi\)
\(380\) 0 0
\(381\) 14.4237 0.738950
\(382\) 0 0
\(383\) −5.69455 5.69455i −0.290978 0.290978i 0.546489 0.837467i \(-0.315964\pi\)
−0.837467 + 0.546489i \(0.815964\pi\)
\(384\) 0 0
\(385\) −32.6200 30.5208i −1.66247 1.55548i
\(386\) 0 0
\(387\) 5.14949 5.14949i 0.261763 0.261763i
\(388\) 0 0
\(389\) 8.44581i 0.428220i −0.976810 0.214110i \(-0.931315\pi\)
0.976810 0.214110i \(-0.0686850\pi\)
\(390\) 0 0
\(391\) 7.57969i 0.383321i
\(392\) 0 0
\(393\) 8.81739 8.81739i 0.444778 0.444778i
\(394\) 0 0
\(395\) −8.00000 + 0.265977i −0.402524 + 0.0133828i
\(396\) 0 0
\(397\) −18.0769 18.0769i −0.907253 0.907253i 0.0887965 0.996050i \(-0.471698\pi\)
−0.996050 + 0.0887965i \(0.971698\pi\)
\(398\) 0 0
\(399\) −11.7028 −0.585872
\(400\) 0 0
\(401\) −31.8787 −1.59194 −0.795972 0.605333i \(-0.793040\pi\)
−0.795972 + 0.605333i \(0.793040\pi\)
\(402\) 0 0
\(403\) 10.0772 + 10.0772i 0.501980 + 0.501980i
\(404\) 0 0
\(405\) 2.23483 0.0743018i 0.111050 0.00369209i
\(406\) 0 0
\(407\) 25.9320 25.9320i 1.28540 1.28540i
\(408\) 0 0
\(409\) 27.3063i 1.35021i −0.737721 0.675106i \(-0.764098\pi\)
0.737721 0.675106i \(-0.235902\pi\)
\(410\) 0 0
\(411\) 6.54809i 0.322993i
\(412\) 0 0
\(413\) 15.4549 15.4549i 0.760488 0.760488i
\(414\) 0 0
\(415\) −3.10355 2.90382i −0.152347 0.142543i
\(416\) 0 0
\(417\) 2.12652 + 2.12652i 0.104136 + 0.104136i
\(418\) 0 0
\(419\) 16.1412 0.788551 0.394275 0.918992i \(-0.370996\pi\)
0.394275 + 0.918992i \(0.370996\pi\)
\(420\) 0 0
\(421\) 20.6200 1.00496 0.502480 0.864589i \(-0.332421\pi\)
0.502480 + 0.864589i \(0.332421\pi\)
\(422\) 0 0
\(423\) −0.679824 0.679824i −0.0330542 0.0330542i
\(424\) 0 0
\(425\) −12.2871 10.7533i −0.596010 0.521612i
\(426\) 0 0
\(427\) −38.7959 + 38.7959i −1.87747 + 1.87747i
\(428\) 0 0
\(429\) 15.9246i 0.768847i
\(430\) 0 0
\(431\) 2.54848i 0.122756i 0.998115 + 0.0613779i \(0.0195495\pi\)
−0.998115 + 0.0613779i \(0.980451\pi\)
\(432\) 0 0
\(433\) 6.77996 6.77996i 0.325824 0.325824i −0.525172 0.850996i \(-0.675999\pi\)
0.850996 + 0.525172i \(0.175999\pi\)
\(434\) 0 0
\(435\) 12.4853 13.3440i 0.598623 0.639797i
\(436\) 0 0
\(437\) −4.29721 4.29721i −0.205563 0.205563i
\(438\) 0 0
\(439\) −15.0698 −0.719243 −0.359622 0.933098i \(-0.617094\pi\)
−0.359622 + 0.933098i \(0.617094\pi\)
\(440\) 0 0
\(441\) 12.9779 0.617996
\(442\) 0 0
\(443\) −9.69059 9.69059i −0.460414 0.460414i 0.438377 0.898791i \(-0.355553\pi\)
−0.898791 + 0.438377i \(0.855553\pi\)
\(444\) 0 0
\(445\) 1.31030 + 39.4108i 0.0621139 + 1.86825i
\(446\) 0 0
\(447\) −0.105079 + 0.105079i −0.00497005 + 0.00497005i
\(448\) 0 0
\(449\) 20.1759i 0.952158i 0.879402 + 0.476079i \(0.157942\pi\)
−0.879402 + 0.476079i \(0.842058\pi\)
\(450\) 0 0
\(451\) 11.7028i 0.551063i
\(452\) 0 0
\(453\) −14.5806 + 14.5806i −0.685055 + 0.685055i
\(454\) 0 0
\(455\) 1.18323 + 35.5888i 0.0554705 + 1.66843i
\(456\) 0 0
\(457\) −0.579686 0.579686i −0.0271165 0.0271165i 0.693419 0.720535i \(-0.256104\pi\)
−0.720535 + 0.693419i \(0.756104\pi\)
\(458\) 0 0
\(459\) −3.26561 −0.152426
\(460\) 0 0
\(461\) 4.40164 0.205005 0.102503 0.994733i \(-0.467315\pi\)
0.102503 + 0.994733i \(0.467315\pi\)
\(462\) 0 0
\(463\) 0.786155 + 0.786155i 0.0365357 + 0.0365357i 0.725139 0.688603i \(-0.241776\pi\)
−0.688603 + 0.725139i \(0.741776\pi\)
\(464\) 0 0
\(465\) −6.11091 + 6.53122i −0.283386 + 0.302878i
\(466\) 0 0
\(467\) 19.6430 19.6430i 0.908970 0.908970i −0.0872190 0.996189i \(-0.527798\pi\)
0.996189 + 0.0872190i \(0.0277980\pi\)
\(468\) 0 0
\(469\) 59.7132i 2.75730i
\(470\) 0 0
\(471\) 13.8306i 0.637279i
\(472\) 0 0
\(473\) 23.0165 23.0165i 1.05830 1.05830i
\(474\) 0 0
\(475\) 13.0624 0.869539i 0.599346 0.0398972i
\(476\) 0 0
\(477\) 7.81739 + 7.81739i 0.357933 + 0.357933i
\(478\) 0 0
\(479\) 30.6274 1.39940 0.699701 0.714436i \(-0.253316\pi\)
0.699701 + 0.714436i \(0.253316\pi\)
\(480\) 0 0
\(481\) −29.2327 −1.33290
\(482\) 0 0
\(483\) 7.33579 + 7.33579i 0.333790 + 0.333790i
\(484\) 0 0
\(485\) 3.05051 + 2.85420i 0.138517 + 0.129602i
\(486\) 0 0
\(487\) −24.7641 + 24.7641i −1.12217 + 1.12217i −0.130752 + 0.991415i \(0.541739\pi\)
−0.991415 + 0.130752i \(0.958261\pi\)
\(488\) 0 0
\(489\) 14.7193i 0.665629i
\(490\) 0 0
\(491\) 23.3318i 1.05295i 0.850190 + 0.526475i \(0.176487\pi\)
−0.850190 + 0.526475i \(0.823513\pi\)
\(492\) 0 0
\(493\) −18.8713 + 18.8713i −0.849921 + 0.849921i
\(494\) 0 0
\(495\) 9.98896 0.332104i 0.448970 0.0149270i
\(496\) 0 0
\(497\) −17.8787 17.8787i −0.801968 0.801968i
\(498\) 0 0
\(499\) −40.4051 −1.80878 −0.904389 0.426708i \(-0.859673\pi\)
−0.904389 + 0.426708i \(0.859673\pi\)
\(500\) 0 0
\(501\) −8.57233 −0.382984
\(502\) 0 0
\(503\) −0.160805 0.160805i −0.00716996 0.00716996i 0.703513 0.710683i \(-0.251614\pi\)
−0.710683 + 0.703513i \(0.751614\pi\)
\(504\) 0 0
\(505\) −3.30089 + 0.109745i −0.146888 + 0.00488360i
\(506\) 0 0
\(507\) 0.216611 0.216611i 0.00962002 0.00962002i
\(508\) 0 0
\(509\) 11.4862i 0.509115i −0.967058 0.254558i \(-0.918070\pi\)
0.967058 0.254558i \(-0.0819299\pi\)
\(510\) 0 0
\(511\) 35.5134i 1.57102i
\(512\) 0 0
\(513\) 1.85140 1.85140i 0.0817411 0.0817411i
\(514\) 0 0
\(515\) −21.0468 19.6924i −0.927434 0.867749i
\(516\) 0 0
\(517\) −3.03858 3.03858i −0.133637 0.133637i
\(518\) 0 0
\(519\) 0.502150 0.0220419
\(520\) 0 0
\(521\) 16.3744 0.717374 0.358687 0.933458i \(-0.383224\pi\)
0.358687 + 0.933458i \(0.383224\pi\)
\(522\) 0 0
\(523\) 5.02638 + 5.02638i 0.219788 + 0.219788i 0.808409 0.588621i \(-0.200329\pi\)
−0.588621 + 0.808409i \(0.700329\pi\)
\(524\) 0 0
\(525\) −22.2990 + 1.48440i −0.973207 + 0.0647843i
\(526\) 0 0
\(527\) 9.23654 9.23654i 0.402350 0.402350i
\(528\) 0 0
\(529\) 17.6127i 0.765768i
\(530\) 0 0
\(531\) 4.88998i 0.212207i
\(532\) 0 0
\(533\) −6.59619 + 6.59619i −0.285713 + 0.285713i
\(534\) 0 0
\(535\) −4.45405 + 4.76041i −0.192565 + 0.205810i
\(536\) 0 0
\(537\) −11.1384 11.1384i −0.480660 0.480660i
\(538\) 0 0
\(539\) 58.0070 2.49854
\(540\) 0 0
\(541\) 32.3302 1.38998 0.694992 0.719017i \(-0.255408\pi\)
0.694992 + 0.719017i \(0.255408\pi\)
\(542\) 0 0
\(543\) 5.50126 + 5.50126i 0.236082 + 0.236082i
\(544\) 0 0
\(545\) −0.720935 21.6841i −0.0308815 0.928846i
\(546\) 0 0
\(547\) −8.01165 + 8.01165i −0.342554 + 0.342554i −0.857327 0.514773i \(-0.827876\pi\)
0.514773 + 0.857327i \(0.327876\pi\)
\(548\) 0 0
\(549\) 12.2751i 0.523890i
\(550\) 0 0
\(551\) 21.3977i 0.911573i
\(552\) 0 0
\(553\) 11.3137 11.3137i 0.481108 0.481108i
\(554\) 0 0
\(555\) −0.609642 18.3367i −0.0258779 0.778349i
\(556\) 0 0
\(557\) −0.138448 0.138448i −0.00586624 0.00586624i 0.704168 0.710034i \(-0.251320\pi\)
−0.710034 + 0.704168i \(0.751320\pi\)
\(558\) 0 0
\(559\) −25.9461 −1.09740
\(560\) 0 0
\(561\) −14.5962 −0.616251
\(562\) 0 0
\(563\) 14.7843 + 14.7843i 0.623082 + 0.623082i 0.946318 0.323236i \(-0.104771\pi\)
−0.323236 + 0.946318i \(0.604771\pi\)
\(564\) 0 0
\(565\) 10.0037 10.6918i 0.420858 0.449805i
\(566\) 0 0
\(567\) −3.16053 + 3.16053i −0.132730 + 0.132730i
\(568\) 0 0
\(569\) 29.9558i 1.25581i 0.778288 + 0.627907i \(0.216088\pi\)
−0.778288 + 0.627907i \(0.783912\pi\)
\(570\) 0 0
\(571\) 8.52134i 0.356607i 0.983976 + 0.178303i \(0.0570609\pi\)
−0.983976 + 0.178303i \(0.942939\pi\)
\(572\) 0 0
\(573\) 6.61827 6.61827i 0.276482 0.276482i
\(574\) 0 0
\(575\) −8.73314 7.64301i −0.364197 0.318736i
\(576\) 0 0
\(577\) 10.9779 + 10.9779i 0.457017 + 0.457017i 0.897675 0.440658i \(-0.145255\pi\)
−0.440658 + 0.897675i \(0.645255\pi\)
\(578\) 0 0
\(579\) −24.2904 −1.00947
\(580\) 0 0
\(581\) 8.49571 0.352461
\(582\) 0 0
\(583\) 34.9411 + 34.9411i 1.44711 + 1.44711i
\(584\) 0 0
\(585\) −5.81739 5.44301i −0.240519 0.225041i
\(586\) 0 0
\(587\) −18.0174 + 18.0174i −0.743657 + 0.743657i −0.973280 0.229623i \(-0.926251\pi\)
0.229623 + 0.973280i \(0.426251\pi\)
\(588\) 0 0
\(589\) 10.4731i 0.431536i
\(590\) 0 0
\(591\) 2.60140i 0.107007i
\(592\) 0 0
\(593\) −25.8906 + 25.8906i −1.06320 + 1.06320i −0.0653359 + 0.997863i \(0.520812\pi\)
−0.997863 + 0.0653359i \(0.979188\pi\)
\(594\) 0 0
\(595\) 32.6200 1.08452i 1.33729 0.0444611i
\(596\) 0 0
\(597\) −0.312822 0.312822i −0.0128030 0.0128030i
\(598\) 0 0
\(599\) −8.89517 −0.363447 −0.181723 0.983350i \(-0.558168\pi\)
−0.181723 + 0.983350i \(0.558168\pi\)
\(600\) 0 0
\(601\) 35.3393 1.44152 0.720761 0.693184i \(-0.243793\pi\)
0.720761 + 0.693184i \(0.243793\pi\)
\(602\) 0 0
\(603\) 9.44670 + 9.44670i 0.384699 + 0.384699i
\(604\) 0 0
\(605\) 20.0641 0.667075i 0.815724 0.0271205i
\(606\) 0 0
\(607\) 4.90926 4.90926i 0.199261 0.199261i −0.600422 0.799683i \(-0.705001\pi\)
0.799683 + 0.600422i \(0.205001\pi\)
\(608\) 0 0
\(609\) 36.5282i 1.48020i
\(610\) 0 0
\(611\) 3.42535i 0.138575i
\(612\) 0 0
\(613\) −1.87894 + 1.87894i −0.0758896 + 0.0758896i −0.744033 0.668143i \(-0.767089\pi\)
0.668143 + 0.744033i \(0.267089\pi\)
\(614\) 0 0
\(615\) −4.27512 4.00000i −0.172390 0.161296i
\(616\) 0 0
\(617\) −5.07260 5.07260i −0.204215 0.204215i 0.597588 0.801803i \(-0.296126\pi\)
−0.801803 + 0.597588i \(0.796126\pi\)
\(618\) 0 0
\(619\) −46.2769 −1.86003 −0.930013 0.367527i \(-0.880204\pi\)
−0.930013 + 0.367527i \(0.880204\pi\)
\(620\) 0 0
\(621\) −2.32106 −0.0931410
\(622\) 0 0
\(623\) −55.7352 55.7352i −2.23299 2.23299i
\(624\) 0 0
\(625\) 24.7794 3.31371i 0.991177 0.132548i
\(626\) 0 0
\(627\) 8.27512 8.27512i 0.330477 0.330477i
\(628\) 0 0
\(629\) 26.7941i 1.06835i
\(630\) 0 0
\(631\) 36.6457i 1.45884i 0.684066 + 0.729421i \(0.260210\pi\)
−0.684066 + 0.729421i \(0.739790\pi\)
\(632\) 0 0
\(633\) 3.75214 3.75214i 0.149134 0.149134i
\(634\) 0 0
\(635\) 22.0355 23.5511i 0.874453 0.934598i
\(636\) 0 0
\(637\) −32.6952 32.6952i −1.29543 1.29543i
\(638\) 0 0
\(639\) 5.65685 0.223782
\(640\) 0 0
\(641\) −12.1520 −0.479976 −0.239988 0.970776i \(-0.577143\pi\)
−0.239988 + 0.970776i \(0.577143\pi\)
\(642\) 0 0
\(643\) 6.53122 + 6.53122i 0.257566 + 0.257566i 0.824064 0.566497i \(-0.191702\pi\)
−0.566497 + 0.824064i \(0.691702\pi\)
\(644\) 0 0
\(645\) −0.541101 16.2751i −0.0213058 0.640832i
\(646\) 0 0
\(647\) 17.6192 17.6192i 0.692681 0.692681i −0.270140 0.962821i \(-0.587070\pi\)
0.962821 + 0.270140i \(0.0870701\pi\)
\(648\) 0 0
\(649\) 21.8566i 0.857946i
\(650\) 0 0
\(651\) 17.8787i 0.700720i
\(652\) 0 0
\(653\) −0.727677 + 0.727677i −0.0284762 + 0.0284762i −0.721202 0.692725i \(-0.756410\pi\)
0.692725 + 0.721202i \(0.256410\pi\)
\(654\) 0 0
\(655\) −0.926519 27.8676i −0.0362021 1.08888i
\(656\) 0 0
\(657\) −5.61827 5.61827i −0.219190 0.219190i
\(658\) 0 0
\(659\) −44.9004 −1.74907 −0.874535 0.484963i \(-0.838833\pi\)
−0.874535 + 0.484963i \(0.838833\pi\)
\(660\) 0 0
\(661\) −14.9320 −0.580786 −0.290393 0.956907i \(-0.593786\pi\)
−0.290393 + 0.956907i \(0.593786\pi\)
\(662\) 0 0
\(663\) 8.22703 + 8.22703i 0.319511 + 0.319511i
\(664\) 0 0
\(665\) −17.8787 + 19.1084i −0.693305 + 0.740991i
\(666\) 0 0
\(667\) −13.4130 + 13.4130i −0.519352 + 0.519352i
\(668\) 0 0
\(669\) 7.75214i 0.299715i
\(670\) 0 0
\(671\) 54.8657i 2.11807i
\(672\) 0 0
\(673\) 2.55583 2.55583i 0.0985200 0.0985200i −0.656129 0.754649i \(-0.727807\pi\)
0.754649 + 0.656129i \(0.227807\pi\)
\(674\) 0 0
\(675\) 3.29289 3.76256i 0.126744 0.144821i
\(676\) 0 0
\(677\) −17.7147 17.7147i −0.680832 0.680832i 0.279356 0.960188i \(-0.409879\pi\)
−0.960188 + 0.279356i \(0.909879\pi\)
\(678\) 0 0
\(679\) −8.35052 −0.320464
\(680\) 0 0
\(681\) 13.4584 0.515725
\(682\) 0 0
\(683\) 11.3968 + 11.3968i 0.436086 + 0.436086i 0.890693 0.454606i \(-0.150220\pi\)
−0.454606 + 0.890693i \(0.650220\pi\)
\(684\) 0 0
\(685\) −10.6918 10.0037i −0.408511 0.382221i
\(686\) 0 0
\(687\) 3.71841 3.71841i 0.141866 0.141866i
\(688\) 0 0
\(689\) 39.3886i 1.50058i
\(690\) 0 0
\(691\) 6.94671i 0.264265i −0.991232 0.132133i \(-0.957818\pi\)
0.991232 0.132133i \(-0.0421825\pi\)
\(692\) 0 0
\(693\) −14.1265 + 14.1265i −0.536622 + 0.536622i
\(694\) 0 0
\(695\) 6.72093 0.223452i 0.254940 0.00847601i
\(696\) 0 0
\(697\) 6.04594 + 6.04594i 0.229006 + 0.229006i
\(698\) 0 0
\(699\) −4.13998 −0.156588
\(700\) 0 0
\(701\) 9.70621 0.366598 0.183299 0.983057i \(-0.441322\pi\)
0.183299 + 0.983057i \(0.441322\pi\)
\(702\) 0 0
\(703\) −15.1906 15.1906i −0.572924 0.572924i
\(704\) 0 0
\(705\) −2.14860 + 0.0714349i −0.0809211 + 0.00269039i
\(706\) 0 0
\(707\) 4.66817 4.66817i 0.175565 0.175565i
\(708\) 0 0
\(709\) 10.7414i 0.403401i 0.979447 + 0.201700i \(0.0646467\pi\)
−0.979447 + 0.201700i \(0.935353\pi\)
\(710\) 0 0
\(711\) 3.57969i 0.134249i
\(712\) 0 0
\(713\) 6.56496 6.56496i 0.245860 0.245860i
\(714\) 0 0
\(715\) −26.0018 24.3284i −0.972411 0.909832i
\(716\) 0 0
\(717\) −8.93933 8.93933i −0.333845 0.333845i
\(718\) 0 0
\(719\) 43.8640 1.63585 0.817925 0.575325i \(-0.195124\pi\)
0.817925 + 0.575325i \(0.195124\pi\)
\(720\) 0 0
\(721\) 57.6139 2.14565
\(722\) 0 0
\(723\) −10.2990 10.2990i −0.383023 0.383023i
\(724\) 0 0
\(725\) −2.71411 40.7721i −0.100799 1.51424i
\(726\) 0 0
\(727\) 9.95522 9.95522i 0.369219 0.369219i −0.497974 0.867192i \(-0.665922\pi\)
0.867192 + 0.497974i \(0.165922\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 23.7817i 0.879599i
\(732\) 0 0
\(733\) −16.9924 + 16.9924i −0.627628 + 0.627628i −0.947471 0.319843i \(-0.896370\pi\)
0.319843 + 0.947471i \(0.396370\pi\)
\(734\) 0 0
\(735\) 19.8267 21.1904i 0.731319 0.781620i
\(736\) 0 0
\(737\) 42.2236 + 42.2236i 1.55533 + 1.55533i
\(738\) 0 0
\(739\) −27.9025 −1.02641 −0.513205 0.858266i \(-0.671542\pi\)
−0.513205 + 0.858266i \(0.671542\pi\)
\(740\) 0 0
\(741\) −9.32842 −0.342688
\(742\) 0 0
\(743\) 20.2907 + 20.2907i 0.744395 + 0.744395i 0.973420 0.229025i \(-0.0735539\pi\)
−0.229025 + 0.973420i \(0.573554\pi\)
\(744\) 0 0
\(745\) 0.0110415 + 0.332104i 0.000404530 + 0.0121674i
\(746\) 0 0
\(747\) −1.34403 + 1.34403i −0.0491756 + 0.0491756i
\(748\) 0 0
\(749\) 13.0312i 0.476150i
\(750\) 0 0
\(751\) 1.97054i 0.0719061i −0.999353 0.0359531i \(-0.988553\pi\)
0.999353 0.0359531i \(-0.0114467\pi\)
\(752\) 0 0
\(753\) 13.1146 13.1146i 0.477922 0.477922i
\(754\) 0 0
\(755\) 1.53211 + 46.0824i 0.0557591 + 1.67711i
\(756\) 0 0
\(757\) −9.13933 9.13933i −0.332175 0.332175i 0.521237 0.853412i \(-0.325471\pi\)
−0.853412 + 0.521237i \(0.825471\pi\)
\(758\) 0 0
\(759\) −10.3744 −0.376566
\(760\) 0 0
\(761\) −23.7800 −0.862023 −0.431011 0.902346i \(-0.641843\pi\)
−0.431011 + 0.902346i \(0.641843\pi\)
\(762\) 0 0
\(763\) 30.6660 + 30.6660i 1.11018 + 1.11018i
\(764\) 0 0
\(765\) −4.98896 + 5.33210i −0.180376 + 0.192783i
\(766\) 0 0
\(767\) 12.3193 12.3193i 0.444824 0.444824i
\(768\) 0 0
\(769\) 17.7022i 0.638359i −0.947694 0.319180i \(-0.896593\pi\)
0.947694 0.319180i \(-0.103407\pi\)
\(770\) 0 0
\(771\) 18.7362i 0.674766i
\(772\) 0 0
\(773\) −9.30178 + 9.30178i −0.334562 + 0.334562i −0.854316 0.519754i \(-0.826024\pi\)
0.519754 + 0.854316i \(0.326024\pi\)
\(774\) 0 0
\(775\) 1.32842 + 19.9558i 0.0477181 + 0.716835i
\(776\) 0 0
\(777\) 25.9320 + 25.9320i 0.930305 + 0.930305i
\(778\) 0 0
\(779\) −6.85534 −0.245618
\(780\) 0 0
\(781\) 25.2843 0.904742
\(782\) 0 0
\(783\) −5.77880 5.77880i −0.206518 0.206518i
\(784\) 0 0
\(785\) −22.5826 21.1293i −0.806008 0.754138i
\(786\) 0 0
\(787\) 18.1642 18.1642i 0.647484 0.647484i −0.304900 0.952384i \(-0.598623\pi\)
0.952384 + 0.304900i \(0.0986230\pi\)
\(788\) 0 0
\(789\) 31.9338i 1.13687i
\(790\) 0 0
\(791\) 29.2678i 1.04064i
\(792\) 0 0
\(793\) −30.9246 + 30.9246i −1.09817 + 1.09817i
\(794\) 0 0
\(795\) 24.7071 0.821440i 0.876270 0.0291335i
\(796\) 0 0
\(797\) 4.75098 + 4.75098i 0.168289 + 0.168289i 0.786227 0.617938i \(-0.212032\pi\)
−0.617938 + 0.786227i \(0.712032\pi\)
\(798\) 0 0
\(799\) 3.13961 0.111071
\(800\) 0 0
\(801\) 17.6348 0.623094
\(802\) 0 0
\(803\) −25.1118 25.1118i −0.886176 0.886176i
\(804\) 0 0
\(805\) 23.1850 0.770835i 0.817164 0.0271684i
\(806\) 0 0
\(807\) −4.82260 + 4.82260i −0.169764 + 0.169764i
\(808\) 0 0
\(809\) 37.7891i 1.32859i 0.747469 + 0.664297i \(0.231269\pi\)
−0.747469 + 0.664297i \(0.768731\pi\)
\(810\) 0 0
\(811\) 44.4215i 1.55985i 0.625872 + 0.779926i \(0.284743\pi\)
−0.625872 + 0.779926i \(0.715257\pi\)
\(812\) 0 0
\(813\) 1.93845 1.93845i 0.0679843 0.0679843i
\(814\) 0 0
\(815\) −24.0337 22.4871i −0.841865 0.787687i
\(816\) 0 0
\(817\) −13.4828 13.4828i −0.471702 0.471702i
\(818\) 0 0
\(819\) 15.9246 0.556451
\(820\) 0 0
\(821\) 29.3648 1.02484 0.512420 0.858735i \(-0.328749\pi\)
0.512420 + 0.858735i \(0.328749\pi\)
\(822\) 0 0
\(823\) 22.7402 + 22.7402i 0.792674 + 0.792674i 0.981928 0.189254i \(-0.0606070\pi\)
−0.189254 + 0.981928i \(0.560607\pi\)
\(824\) 0 0
\(825\) 14.7181 16.8174i 0.512420 0.585506i
\(826\) 0 0
\(827\) −1.50001 + 1.50001i −0.0521605 + 0.0521605i −0.732706 0.680545i \(-0.761743\pi\)
0.680545 + 0.732706i \(0.261743\pi\)
\(828\) 0 0
\(829\) 29.0642i 1.00944i 0.863283 + 0.504721i \(0.168405\pi\)
−0.863283 + 0.504721i \(0.831595\pi\)
\(830\) 0 0
\(831\) 10.9684i 0.380490i
\(832\) 0 0
\(833\) −29.9678 + 29.9678i −1.03832 + 1.03832i
\(834\) 0 0
\(835\) −13.0962 + 13.9969i −0.453212 + 0.484384i
\(836\) 0 0
\(837\) 2.82843 + 2.82843i 0.0977647 + 0.0977647i
\(838\) 0 0
\(839\) −38.3779 −1.32495 −0.662476 0.749083i \(-0.730495\pi\)
−0.662476 + 0.749083i \(0.730495\pi\)
\(840\) 0 0
\(841\) −37.7891 −1.30307
\(842\) 0 0
\(843\) −3.21104 3.21104i −0.110594 0.110594i
\(844\) 0 0
\(845\) −0.0227612 0.684605i −0.000783008 0.0235511i
\(846\) 0 0
\(847\) −28.3750 + 28.3750i −0.974976 + 0.974976i
\(848\) 0 0
\(849\) 11.1906i 0.384060i
\(850\) 0 0
\(851\) 19.0442i 0.652826i
\(852\) 0 0
\(853\) −28.1467 + 28.1467i −0.963724 + 0.963724i −0.999365 0.0356404i \(-0.988653\pi\)
0.0356404 + 0.999365i \(0.488653\pi\)
\(854\) 0 0
\(855\) −0.194542 5.85140i −0.00665320 0.200114i
\(856\) 0 0
\(857\) −13.5990 13.5990i −0.464533 0.464533i 0.435605 0.900138i \(-0.356534\pi\)
−0.900138 + 0.435605i \(0.856534\pi\)
\(858\) 0 0
\(859\) −14.9155 −0.508910 −0.254455 0.967085i \(-0.581896\pi\)
−0.254455 + 0.967085i \(0.581896\pi\)
\(860\) 0 0
\(861\) 11.7028 0.398830
\(862\) 0 0
\(863\) 8.95495 + 8.95495i 0.304830 + 0.304830i 0.842900 0.538070i \(-0.180846\pi\)
−0.538070 + 0.842900i \(0.680846\pi\)
\(864\) 0 0
\(865\) 0.767147 0.819913i 0.0260838 0.0278779i
\(866\) 0 0
\(867\) −4.48008 + 4.48008i −0.152152 + 0.152152i
\(868\) 0 0
\(869\) 16.0000i 0.542763i
\(870\) 0 0
\(871\) 47.5980i 1.61280i
\(872\) 0 0
\(873\) 1.32106 1.32106i 0.0447112 0.0447112i
\(874\) 0 0
\(875\) −31.6430 + 38.6776i −1.06973 + 1.30754i
\(876\) 0 0
\(877\) 37.8274 + 37.8274i 1.27734 + 1.27734i 0.942151 + 0.335190i \(0.108800\pi\)
0.335190 + 0.942151i \(0.391200\pi\)
\(878\) 0 0
\(879\) 21.3544 0.720267
\(880\) 0 0
\(881\) 23.7119 0.798876 0.399438 0.916760i \(-0.369205\pi\)
0.399438 + 0.916760i \(0.369205\pi\)
\(882\) 0 0
\(883\) −9.39338 9.39338i −0.316113 0.316113i 0.531159 0.847272i \(-0.321757\pi\)
−0.847272 + 0.531159i \(0.821757\pi\)
\(884\) 0 0
\(885\) 7.98438 + 7.47055i 0.268392 + 0.251120i
\(886\) 0 0
\(887\) −0.825014 + 0.825014i −0.0277013 + 0.0277013i −0.720822 0.693120i \(-0.756235\pi\)
0.693120 + 0.720822i \(0.256235\pi\)
\(888\) 0 0
\(889\) 64.4693i 2.16223i
\(890\) 0 0
\(891\) 4.46967i 0.149739i
\(892\) 0 0
\(893\) −1.77996 + 1.77996i −0.0595641 + 0.0595641i
\(894\) 0 0
\(895\) −35.2034 + 1.17041i −1.17672 + 0.0391226i
\(896\) 0 0
\(897\) 5.84744 + 5.84744i 0.195240 + 0.195240i
\(898\) 0 0
\(899\) 32.6898 1.09027
\(900\) 0 0
\(901\) −36.1028 −1.20276
\(902\) 0 0
\(903\) 23.0165 + 23.0165i 0.765941 + 0.765941i
\(904\) 0 0
\(905\) 17.3869 0.578065i 0.577961 0.0192155i
\(906\) 0 0
\(907\) −1.59189 + 1.59189i −0.0528578 + 0.0528578i −0.733042 0.680184i \(-0.761900\pi\)
0.680184 + 0.733042i \(0.261900\pi\)
\(908\) 0 0
\(909\) 1.47702i 0.0489897i
\(910\) 0 0
\(911\) 55.3926i 1.83524i 0.397458 + 0.917620i \(0.369892\pi\)
−0.397458 + 0.917620i \(0.630108\pi\)
\(912\) 0 0
\(913\) −6.00737 + 6.00737i −0.198815 + 0.198815i
\(914\) 0 0
\(915\) −20.0429 18.7530i −0.662597 0.619956i
\(916\) 0 0
\(917\) 39.4108 + 39.4108i 1.30146 + 1.30146i
\(918\) 0 0
\(919\) 4.31369 0.142295 0.0711477 0.997466i \(-0.477334\pi\)
0.0711477 + 0.997466i \(0.477334\pi\)
\(920\) 0 0
\(921\) −6.26775 −0.206529
\(922\) 0 0
\(923\) −14.2513 14.2513i −0.469086 0.469086i
\(924\) 0 0
\(925\) −30.8716 27.0180i −1.01505 0.888346i
\(926\) 0 0
\(927\) −9.11459 + 9.11459i −0.299363 + 0.299363i
\(928\) 0 0
\(929\) 19.9774i 0.655436i 0.944776 + 0.327718i \(0.106280\pi\)
−0.944776 + 0.327718i \(0.893720\pi\)
\(930\) 0 0
\(931\) 33.9797i 1.11364i
\(932\) 0 0
\(933\) 16.6421 16.6421i 0.544839 0.544839i
\(934\) 0 0
\(935\) −22.2990 + 23.8327i −0.729255 + 0.779414i
\(936\) 0 0
\(937\) −8.97792 8.97792i −0.293296 0.293296i 0.545085 0.838381i \(-0.316497\pi\)
−0.838381 + 0.545085i \(0.816497\pi\)
\(938\) 0 0
\(939\) 26.3094 0.858574
\(940\) 0 0
\(941\) 37.9831 1.23821 0.619107 0.785307i \(-0.287495\pi\)
0.619107 + 0.785307i \(0.287495\pi\)
\(942\) 0 0
\(943\) 4.29721 + 4.29721i 0.139936 + 0.139936i
\(944\) 0 0
\(945\) 0.332104 + 9.98896i 0.0108034 + 0.324941i
\(946\) 0 0
\(947\) 39.0815 39.0815i 1.26998 1.26998i 0.323878 0.946099i \(-0.395013\pi\)
0.946099 0.323878i \(-0.104987\pi\)
\(948\) 0 0
\(949\) 28.3081i 0.918921i
\(950\) 0 0
\(951\) 10.7049i 0.347131i
\(952\) 0 0
\(953\) −1.27232 + 1.27232i −0.0412146 + 0.0412146i −0.727414 0.686199i \(-0.759278\pi\)
0.686199 + 0.727414i \(0.259278\pi\)
\(954\) 0 0
\(955\) −0.695439 20.9172i −0.0225039 0.676866i
\(956\) 0 0
\(957\) −25.8293 25.8293i −0.834943 0.834943i
\(958\) 0 0
\(959\) 29.2678 0.945106
\(960\) 0 0
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) 2.06155 + 2.06155i 0.0664326 + 0.0664326i
\(964\) 0 0
\(965\) −37.1090 + 39.6614i −1.19458 + 1.27675i
\(966\) 0 0
\(967\) 1.67778 1.67778i 0.0539537 0.0539537i −0.679615 0.733569i \(-0.737853\pi\)
0.733569 + 0.679615i \(0.237853\pi\)
\(968\) 0 0
\(969\) 8.55025i 0.274674i
\(970\) 0 0
\(971\) 15.9887i 0.513102i 0.966531 + 0.256551i \(0.0825862\pi\)
−0.966531 + 0.256551i \(0.917414\pi\)
\(972\) 0 0
\(973\) −9.50484 + 9.50484i −0.304711 + 0.304711i
\(974\) 0 0
\(975\) −17.7747 + 1.18323i −0.569247 + 0.0378936i
\(976\) 0 0
\(977\) 16.7754 + 16.7754i 0.536692 + 0.536692i 0.922556 0.385864i \(-0.126096\pi\)
−0.385864 + 0.922556i \(0.626096\pi\)
\(978\) 0 0
\(979\) 78.8215 2.51915
\(980\) 0 0
\(981\) −9.70279 −0.309786
\(982\) 0 0
\(983\) −34.3367 34.3367i −1.09517 1.09517i −0.994967 0.100203i \(-0.968051\pi\)
−0.100203 0.994967i \(-0.531949\pi\)
\(984\) 0 0
\(985\) 4.24758 + 3.97423i 0.135339 + 0.126629i
\(986\) 0 0
\(987\) 3.03858 3.03858i 0.0967192 0.0967192i
\(988\) 0 0
\(989\) 16.9031i 0.537487i
\(990\) 0 0
\(991\) 26.7414i 0.849468i −0.905318 0.424734i \(-0.860368\pi\)
0.905318 0.424734i \(-0.139632\pi\)
\(992\) 0 0
\(993\) −9.75952 + 9.75952i −0.309709 + 0.309709i
\(994\) 0 0
\(995\) −0.988685 + 0.0328709i −0.0313434 + 0.00104208i
\(996\) 0 0
\(997\) 9.80177 + 9.80177i 0.310425 + 0.310425i 0.845074 0.534649i \(-0.179556\pi\)
−0.534649 + 0.845074i \(0.679556\pi\)
\(998\) 0 0
\(999\) −8.20494 −0.259593
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.w.f.127.1 8
4.3 odd 2 960.2.w.e.127.3 8
5.3 odd 4 960.2.w.e.703.3 8
8.3 odd 2 480.2.w.c.127.2 8
8.5 even 2 480.2.w.d.127.4 yes 8
20.3 even 4 inner 960.2.w.f.703.1 8
24.5 odd 2 1440.2.x.r.127.1 8
24.11 even 2 1440.2.x.q.127.1 8
40.3 even 4 480.2.w.d.223.4 yes 8
40.13 odd 4 480.2.w.c.223.2 yes 8
40.19 odd 2 2400.2.w.j.607.4 8
40.27 even 4 2400.2.w.i.2143.1 8
40.29 even 2 2400.2.w.i.607.1 8
40.37 odd 4 2400.2.w.j.2143.4 8
120.53 even 4 1440.2.x.q.703.1 8
120.83 odd 4 1440.2.x.r.703.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.2.w.c.127.2 8 8.3 odd 2
480.2.w.c.223.2 yes 8 40.13 odd 4
480.2.w.d.127.4 yes 8 8.5 even 2
480.2.w.d.223.4 yes 8 40.3 even 4
960.2.w.e.127.3 8 4.3 odd 2
960.2.w.e.703.3 8 5.3 odd 4
960.2.w.f.127.1 8 1.1 even 1 trivial
960.2.w.f.703.1 8 20.3 even 4 inner
1440.2.x.q.127.1 8 24.11 even 2
1440.2.x.q.703.1 8 120.53 even 4
1440.2.x.r.127.1 8 24.5 odd 2
1440.2.x.r.703.1 8 120.83 odd 4
2400.2.w.i.607.1 8 40.29 even 2
2400.2.w.i.2143.1 8 40.27 even 4
2400.2.w.j.607.4 8 40.19 odd 2
2400.2.w.j.2143.4 8 40.37 odd 4