L(s) = 1 | + (1.22 + 1.22i)3-s + (4.67 + 1.77i)5-s + (3.44 − 3.44i)7-s + 2.99i·9-s − 11.3·11-s + (5.55 + 5.55i)13-s + (3.55 + 7.89i)15-s + (−17.3 + 17.3i)17-s + 8.69i·19-s + 8.44·21-s + (11.5 + 11.5i)23-s + (18.6 + 16.5i)25-s + (−3.67 + 3.67i)27-s + 35.1i·29-s + 10.6·31-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (0.934 + 0.355i)5-s + (0.492 − 0.492i)7-s + 0.333i·9-s − 1.03·11-s + (0.426 + 0.426i)13-s + (0.236 + 0.526i)15-s + (−1.02 + 1.02i)17-s + 0.457i·19-s + 0.402·21-s + (0.502 + 0.502i)23-s + (0.747 + 0.663i)25-s + (−0.136 + 0.136i)27-s + 1.21i·29-s + 0.345·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.130 - 0.991i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.130 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.449023725\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.449023725\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.22 - 1.22i)T \) |
| 5 | \( 1 + (-4.67 - 1.77i)T \) |
good | 7 | \( 1 + (-3.44 + 3.44i)T - 49iT^{2} \) |
| 11 | \( 1 + 11.3T + 121T^{2} \) |
| 13 | \( 1 + (-5.55 - 5.55i)T + 169iT^{2} \) |
| 17 | \( 1 + (17.3 - 17.3i)T - 289iT^{2} \) |
| 19 | \( 1 - 8.69iT - 361T^{2} \) |
| 23 | \( 1 + (-11.5 - 11.5i)T + 529iT^{2} \) |
| 29 | \( 1 - 35.1iT - 841T^{2} \) |
| 31 | \( 1 - 10.6T + 961T^{2} \) |
| 37 | \( 1 + (-6.04 + 6.04i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 - 0.696T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-26.4 - 26.4i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-44.2 + 44.2i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-0.696 - 0.696i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 39.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 5.90T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-45.1 + 45.1i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 68T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-77.7 - 77.7i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 24.4iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (13.1 + 13.1i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + 82.1iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (24.5 - 24.5i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12970969084998704124095958282, −9.184317258188158320405609506988, −8.476610197094911068634084675891, −7.55094784516361353761511570210, −6.61546980019509243437712428500, −5.64448852254817428679515064569, −4.75127434454207242969339712386, −3.70413043769854087468342690817, −2.53687835867811447663255922298, −1.52344328202321822850418770658,
0.73423915449271714187503884576, 2.23091509852329864483018942935, 2.74916042269715485301059886576, 4.49021250771653457460045267612, 5.31547067562833720662951148501, 6.14397470348236770145803749560, 7.14162957565806170358947381981, 8.108942835212444258501246460112, 8.802022057006683479429526313448, 9.462693901985571961969736609145