L(s) = 1 | + (1.22 + 1.22i)3-s + (4.67 + 1.77i)5-s + (3.44 − 3.44i)7-s + 2.99i·9-s − 11.3·11-s + (5.55 + 5.55i)13-s + (3.55 + 7.89i)15-s + (−17.3 + 17.3i)17-s + 8.69i·19-s + 8.44·21-s + (11.5 + 11.5i)23-s + (18.6 + 16.5i)25-s + (−3.67 + 3.67i)27-s + 35.1i·29-s + 10.6·31-s + ⋯ |
L(s) = 1 | + (0.408 + 0.408i)3-s + (0.934 + 0.355i)5-s + (0.492 − 0.492i)7-s + 0.333i·9-s − 1.03·11-s + (0.426 + 0.426i)13-s + (0.236 + 0.526i)15-s + (−1.02 + 1.02i)17-s + 0.457i·19-s + 0.402·21-s + (0.502 + 0.502i)23-s + (0.747 + 0.663i)25-s + (−0.136 + 0.136i)27-s + 1.21i·29-s + 0.345·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.130−0.991i)Λ(3−s)
Λ(s)=(=(960s/2ΓC(s+1)L(s)(0.130−0.991i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.130−0.991i
|
Analytic conductor: |
26.1581 |
Root analytic conductor: |
5.11449 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :1), 0.130−0.991i)
|
Particular Values
L(23) |
≈ |
2.449023725 |
L(21) |
≈ |
2.449023725 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−1.22−1.22i)T |
| 5 | 1+(−4.67−1.77i)T |
good | 7 | 1+(−3.44+3.44i)T−49iT2 |
| 11 | 1+11.3T+121T2 |
| 13 | 1+(−5.55−5.55i)T+169iT2 |
| 17 | 1+(17.3−17.3i)T−289iT2 |
| 19 | 1−8.69iT−361T2 |
| 23 | 1+(−11.5−11.5i)T+529iT2 |
| 29 | 1−35.1iT−841T2 |
| 31 | 1−10.6T+961T2 |
| 37 | 1+(−6.04+6.04i)T−1.36e3iT2 |
| 41 | 1−0.696T+1.68e3T2 |
| 43 | 1+(−26.4−26.4i)T+1.84e3iT2 |
| 47 | 1+(−44.2+44.2i)T−2.20e3iT2 |
| 53 | 1+(−0.696−0.696i)T+2.80e3iT2 |
| 59 | 1+39.9iT−3.48e3T2 |
| 61 | 1+5.90T+3.72e3T2 |
| 67 | 1+(−45.1+45.1i)T−4.48e3iT2 |
| 71 | 1+68T+5.04e3T2 |
| 73 | 1+(−77.7−77.7i)T+5.32e3iT2 |
| 79 | 1−24.4iT−6.24e3T2 |
| 83 | 1+(13.1+13.1i)T+6.88e3iT2 |
| 89 | 1+82.1iT−7.92e3T2 |
| 97 | 1+(24.5−24.5i)T−9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12970969084998704124095958282, −9.184317258188158320405609506988, −8.476610197094911068634084675891, −7.55094784516361353761511570210, −6.61546980019509243437712428500, −5.64448852254817428679515064569, −4.75127434454207242969339712386, −3.70413043769854087468342690817, −2.53687835867811447663255922298, −1.52344328202321822850418770658,
0.73423915449271714187503884576, 2.23091509852329864483018942935, 2.74916042269715485301059886576, 4.49021250771653457460045267612, 5.31547067562833720662951148501, 6.14397470348236770145803749560, 7.14162957565806170358947381981, 8.108942835212444258501246460112, 8.802022057006683479429526313448, 9.462693901985571961969736609145