Properties

Label 960.3.bg.i
Level $960$
Weight $3$
Character orbit 960.bg
Analytic conductor $26.158$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,3,Mod(193,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.193");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 960.bg (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1581053786\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{3} + ( - \beta_{3} - 3 \beta_{2} + 2 \beta_1 + 1) q^{5} + (\beta_{2} + 2 \beta_1 + 1) q^{7} - 3 \beta_{2} q^{9} + (3 \beta_{3} - 3 \beta_1 - 4) q^{11} + (2 \beta_{3} - 8 \beta_{2} + 8) q^{13}+ \cdots + (9 \beta_{3} + 12 \beta_{2} + 9 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + 4 q^{7} - 16 q^{11} + 32 q^{13} + 24 q^{15} - 40 q^{17} + 24 q^{21} + 56 q^{23} + 16 q^{25} - 16 q^{31} - 36 q^{33} + 40 q^{35} - 64 q^{37} - 56 q^{41} + 8 q^{43} - 36 q^{45} + 128 q^{47}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(\beta_{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
−1.22474 + 1.22474i
1.22474 1.22474i
−1.22474 1.22474i
1.22474 + 1.22474i
0 −1.22474 1.22474i 0 −2.67423 + 4.22474i 0 −1.44949 + 1.44949i 0 3.00000i 0
193.2 0 1.22474 + 1.22474i 0 4.67423 + 1.77526i 0 3.44949 3.44949i 0 3.00000i 0
577.1 0 −1.22474 + 1.22474i 0 −2.67423 4.22474i 0 −1.44949 1.44949i 0 3.00000i 0
577.2 0 1.22474 1.22474i 0 4.67423 1.77526i 0 3.44949 + 3.44949i 0 3.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.3.bg.i 4
4.b odd 2 1 960.3.bg.h 4
5.c odd 4 1 inner 960.3.bg.i 4
8.b even 2 1 15.3.f.a 4
8.d odd 2 1 240.3.bg.a 4
20.e even 4 1 960.3.bg.h 4
24.f even 2 1 720.3.bh.k 4
24.h odd 2 1 45.3.g.b 4
40.e odd 2 1 1200.3.bg.k 4
40.f even 2 1 75.3.f.c 4
40.i odd 4 1 15.3.f.a 4
40.i odd 4 1 75.3.f.c 4
40.k even 4 1 240.3.bg.a 4
40.k even 4 1 1200.3.bg.k 4
72.j odd 6 2 405.3.l.f 8
72.n even 6 2 405.3.l.h 8
120.i odd 2 1 225.3.g.a 4
120.q odd 4 1 720.3.bh.k 4
120.w even 4 1 45.3.g.b 4
120.w even 4 1 225.3.g.a 4
360.br even 12 2 405.3.l.f 8
360.bu odd 12 2 405.3.l.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.3.f.a 4 8.b even 2 1
15.3.f.a 4 40.i odd 4 1
45.3.g.b 4 24.h odd 2 1
45.3.g.b 4 120.w even 4 1
75.3.f.c 4 40.f even 2 1
75.3.f.c 4 40.i odd 4 1
225.3.g.a 4 120.i odd 2 1
225.3.g.a 4 120.w even 4 1
240.3.bg.a 4 8.d odd 2 1
240.3.bg.a 4 40.k even 4 1
405.3.l.f 8 72.j odd 6 2
405.3.l.f 8 360.br even 12 2
405.3.l.h 8 72.n even 6 2
405.3.l.h 8 360.bu odd 12 2
720.3.bh.k 4 24.f even 2 1
720.3.bh.k 4 120.q odd 4 1
960.3.bg.h 4 4.b odd 2 1
960.3.bg.h 4 20.e even 4 1
960.3.bg.i 4 1.a even 1 1 trivial
960.3.bg.i 4 5.c odd 4 1 inner
1200.3.bg.k 4 40.e odd 2 1
1200.3.bg.k 4 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} - 4T_{7}^{3} + 8T_{7}^{2} + 40T_{7} + 100 \) acting on \(S_{3}^{\mathrm{new}}(960, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 9 \) Copy content Toggle raw display
$5$ \( T^{4} - 4 T^{3} + \cdots + 625 \) Copy content Toggle raw display
$7$ \( T^{4} - 4 T^{3} + \cdots + 100 \) Copy content Toggle raw display
$11$ \( (T^{2} + 8 T - 38)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 32 T^{3} + \cdots + 13456 \) Copy content Toggle raw display
$17$ \( T^{4} + 40 T^{3} + \cdots + 8464 \) Copy content Toggle raw display
$19$ \( T^{4} + 504 T^{2} + 32400 \) Copy content Toggle raw display
$23$ \( T^{4} - 56 T^{3} + \cdots + 144400 \) Copy content Toggle raw display
$29$ \( T^{4} + 1236T^{2} + 900 \) Copy content Toggle raw display
$31$ \( (T^{2} + 8 T - 200)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 64 T^{3} + \cdots + 211600 \) Copy content Toggle raw display
$41$ \( (T^{2} + 28 T - 20)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 8 T^{3} + \cdots + 1420864 \) Copy content Toggle raw display
$47$ \( T^{4} - 128 T^{3} + \cdots + 3055504 \) Copy content Toggle raw display
$53$ \( T^{4} + 56 T^{3} + \cdots + 1600 \) Copy content Toggle raw display
$59$ \( T^{4} + 14124 T^{2} + 19980900 \) Copy content Toggle raw display
$61$ \( (T^{2} + 100 T + 556)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 200 T^{3} + \cdots + 24522304 \) Copy content Toggle raw display
$71$ \( (T + 68)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} - 76 T^{3} + \cdots + 38316100 \) Copy content Toggle raw display
$79$ \( (T^{2} + 600)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 16 T^{3} + \cdots + 309136 \) Copy content Toggle raw display
$89$ \( T^{4} + 15624 T^{2} + 59907600 \) Copy content Toggle raw display
$97$ \( T^{4} + 20 T^{3} + \cdots + 515524 \) Copy content Toggle raw display
show more
show less