Properties

Label 960.3.bg.i
Level 960960
Weight 33
Character orbit 960.bg
Analytic conductor 26.15826.158
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [960,3,Mod(193,960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(960, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("960.193"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 960=2635 960 = 2^{6} \cdot 3 \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 960.bg (of order 44, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.158105378626.1581053786
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(i,6)\Q(i, \sqrt{6})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9 x^{4} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ3q3+(β33β2+2β1+1)q5+(β2+2β1+1)q73β2q9+(3β33β14)q11+(2β38β2+8)q13++(9β3+12β2+9β1)q99+O(q100) q - \beta_{3} q^{3} + ( - \beta_{3} - 3 \beta_{2} + 2 \beta_1 + 1) q^{5} + (\beta_{2} + 2 \beta_1 + 1) q^{7} - 3 \beta_{2} q^{9} + (3 \beta_{3} - 3 \beta_1 - 4) q^{11} + (2 \beta_{3} - 8 \beta_{2} + 8) q^{13}+ \cdots + (9 \beta_{3} + 12 \beta_{2} + 9 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q5+4q716q11+32q13+24q1540q17+24q21+56q23+16q2516q3136q33+40q3564q3756q41+8q4336q45+128q47+20q97+O(q100) 4 q + 4 q^{5} + 4 q^{7} - 16 q^{11} + 32 q^{13} + 24 q^{15} - 40 q^{17} + 24 q^{21} + 56 q^{23} + 16 q^{25} - 16 q^{31} - 36 q^{33} + 40 q^{35} - 64 q^{37} - 56 q^{41} + 8 q^{43} - 36 q^{45} + 128 q^{47}+ \cdots - 20 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+9 x^{4} + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/3 ( \nu^{2} ) / 3 Copy content Toggle raw display
β3\beta_{3}== (ν3)/3 ( \nu^{3} ) / 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 3β2 3\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 3β3 3\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/960Z)×\left(\mathbb{Z}/960\mathbb{Z}\right)^\times.

nn 511511 577577 641641 901901
χ(n)\chi(n) 11 β2\beta_{2} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
193.1
−1.22474 + 1.22474i
1.22474 1.22474i
−1.22474 1.22474i
1.22474 + 1.22474i
0 −1.22474 1.22474i 0 −2.67423 + 4.22474i 0 −1.44949 + 1.44949i 0 3.00000i 0
193.2 0 1.22474 + 1.22474i 0 4.67423 + 1.77526i 0 3.44949 3.44949i 0 3.00000i 0
577.1 0 −1.22474 + 1.22474i 0 −2.67423 4.22474i 0 −1.44949 1.44949i 0 3.00000i 0
577.2 0 1.22474 1.22474i 0 4.67423 1.77526i 0 3.44949 + 3.44949i 0 3.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.3.bg.i 4
4.b odd 2 1 960.3.bg.h 4
5.c odd 4 1 inner 960.3.bg.i 4
8.b even 2 1 15.3.f.a 4
8.d odd 2 1 240.3.bg.a 4
20.e even 4 1 960.3.bg.h 4
24.f even 2 1 720.3.bh.k 4
24.h odd 2 1 45.3.g.b 4
40.e odd 2 1 1200.3.bg.k 4
40.f even 2 1 75.3.f.c 4
40.i odd 4 1 15.3.f.a 4
40.i odd 4 1 75.3.f.c 4
40.k even 4 1 240.3.bg.a 4
40.k even 4 1 1200.3.bg.k 4
72.j odd 6 2 405.3.l.f 8
72.n even 6 2 405.3.l.h 8
120.i odd 2 1 225.3.g.a 4
120.q odd 4 1 720.3.bh.k 4
120.w even 4 1 45.3.g.b 4
120.w even 4 1 225.3.g.a 4
360.br even 12 2 405.3.l.f 8
360.bu odd 12 2 405.3.l.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.3.f.a 4 8.b even 2 1
15.3.f.a 4 40.i odd 4 1
45.3.g.b 4 24.h odd 2 1
45.3.g.b 4 120.w even 4 1
75.3.f.c 4 40.f even 2 1
75.3.f.c 4 40.i odd 4 1
225.3.g.a 4 120.i odd 2 1
225.3.g.a 4 120.w even 4 1
240.3.bg.a 4 8.d odd 2 1
240.3.bg.a 4 40.k even 4 1
405.3.l.f 8 72.j odd 6 2
405.3.l.f 8 360.br even 12 2
405.3.l.h 8 72.n even 6 2
405.3.l.h 8 360.bu odd 12 2
720.3.bh.k 4 24.f even 2 1
720.3.bh.k 4 120.q odd 4 1
960.3.bg.h 4 4.b odd 2 1
960.3.bg.h 4 20.e even 4 1
960.3.bg.i 4 1.a even 1 1 trivial
960.3.bg.i 4 5.c odd 4 1 inner
1200.3.bg.k 4 40.e odd 2 1
1200.3.bg.k 4 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T744T73+8T72+40T7+100 T_{7}^{4} - 4T_{7}^{3} + 8T_{7}^{2} + 40T_{7} + 100 acting on S3new(960,[χ])S_{3}^{\mathrm{new}}(960, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+9 T^{4} + 9 Copy content Toggle raw display
55 T44T3++625 T^{4} - 4 T^{3} + \cdots + 625 Copy content Toggle raw display
77 T44T3++100 T^{4} - 4 T^{3} + \cdots + 100 Copy content Toggle raw display
1111 (T2+8T38)2 (T^{2} + 8 T - 38)^{2} Copy content Toggle raw display
1313 T432T3++13456 T^{4} - 32 T^{3} + \cdots + 13456 Copy content Toggle raw display
1717 T4+40T3++8464 T^{4} + 40 T^{3} + \cdots + 8464 Copy content Toggle raw display
1919 T4+504T2+32400 T^{4} + 504 T^{2} + 32400 Copy content Toggle raw display
2323 T456T3++144400 T^{4} - 56 T^{3} + \cdots + 144400 Copy content Toggle raw display
2929 T4+1236T2+900 T^{4} + 1236T^{2} + 900 Copy content Toggle raw display
3131 (T2+8T200)2 (T^{2} + 8 T - 200)^{2} Copy content Toggle raw display
3737 T4+64T3++211600 T^{4} + 64 T^{3} + \cdots + 211600 Copy content Toggle raw display
4141 (T2+28T20)2 (T^{2} + 28 T - 20)^{2} Copy content Toggle raw display
4343 T48T3++1420864 T^{4} - 8 T^{3} + \cdots + 1420864 Copy content Toggle raw display
4747 T4128T3++3055504 T^{4} - 128 T^{3} + \cdots + 3055504 Copy content Toggle raw display
5353 T4+56T3++1600 T^{4} + 56 T^{3} + \cdots + 1600 Copy content Toggle raw display
5959 T4+14124T2+19980900 T^{4} + 14124 T^{2} + 19980900 Copy content Toggle raw display
6161 (T2+100T+556)2 (T^{2} + 100 T + 556)^{2} Copy content Toggle raw display
6767 T4200T3++24522304 T^{4} - 200 T^{3} + \cdots + 24522304 Copy content Toggle raw display
7171 (T+68)4 (T + 68)^{4} Copy content Toggle raw display
7373 T476T3++38316100 T^{4} - 76 T^{3} + \cdots + 38316100 Copy content Toggle raw display
7979 (T2+600)2 (T^{2} + 600)^{2} Copy content Toggle raw display
8383 T416T3++309136 T^{4} - 16 T^{3} + \cdots + 309136 Copy content Toggle raw display
8989 T4+15624T2+59907600 T^{4} + 15624 T^{2} + 59907600 Copy content Toggle raw display
9797 T4+20T3++515524 T^{4} + 20 T^{3} + \cdots + 515524 Copy content Toggle raw display
show more
show less