gp: [N,k,chi] = [960,3,Mod(193,960)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(960, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 0, 0, 3]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("960.193");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,0,4,0,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 9 x^{4} + 9 x 4 + 9
x^4 + 9
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 2 ) / 3 ( \nu^{2} ) / 3 ( ν 2 ) / 3
(v^2) / 3
β 3 \beta_{3} β 3 = = =
( ν 3 ) / 3 ( \nu^{3} ) / 3 ( ν 3 ) / 3
(v^3) / 3
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
3 β 2 3\beta_{2} 3 β 2
3*b2
ν 3 \nu^{3} ν 3 = = =
3 β 3 3\beta_{3} 3 β 3
3*b3
Character values
We give the values of χ \chi χ on generators for ( Z / 960 Z ) × \left(\mathbb{Z}/960\mathbb{Z}\right)^\times ( Z / 9 6 0 Z ) × .
n n n
511 511 5 1 1
577 577 5 7 7
641 641 6 4 1
901 901 9 0 1
χ ( n ) \chi(n) χ ( n )
1 1 1
β 2 \beta_{2} β 2
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 7 4 − 4 T 7 3 + 8 T 7 2 + 40 T 7 + 100 T_{7}^{4} - 4T_{7}^{3} + 8T_{7}^{2} + 40T_{7} + 100 T 7 4 − 4 T 7 3 + 8 T 7 2 + 4 0 T 7 + 1 0 0
T7^4 - 4*T7^3 + 8*T7^2 + 40*T7 + 100
acting on S 3 n e w ( 960 , [ χ ] ) S_{3}^{\mathrm{new}}(960, [\chi]) S 3 n e w ( 9 6 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 + 9 T^{4} + 9 T 4 + 9
T^4 + 9
5 5 5
T 4 − 4 T 3 + ⋯ + 625 T^{4} - 4 T^{3} + \cdots + 625 T 4 − 4 T 3 + ⋯ + 6 2 5
T^4 - 4*T^3 - 100*T + 625
7 7 7
T 4 − 4 T 3 + ⋯ + 100 T^{4} - 4 T^{3} + \cdots + 100 T 4 − 4 T 3 + ⋯ + 1 0 0
T^4 - 4*T^3 + 8*T^2 + 40*T + 100
11 11 1 1
( T 2 + 8 T − 38 ) 2 (T^{2} + 8 T - 38)^{2} ( T 2 + 8 T − 3 8 ) 2
(T^2 + 8*T - 38)^2
13 13 1 3
T 4 − 32 T 3 + ⋯ + 13456 T^{4} - 32 T^{3} + \cdots + 13456 T 4 − 3 2 T 3 + ⋯ + 1 3 4 5 6
T^4 - 32*T^3 + 512*T^2 - 3712*T + 13456
17 17 1 7
T 4 + 40 T 3 + ⋯ + 8464 T^{4} + 40 T^{3} + \cdots + 8464 T 4 + 4 0 T 3 + ⋯ + 8 4 6 4
T^4 + 40*T^3 + 800*T^2 + 3680*T + 8464
19 19 1 9
T 4 + 504 T 2 + 32400 T^{4} + 504 T^{2} + 32400 T 4 + 5 0 4 T 2 + 3 2 4 0 0
T^4 + 504*T^2 + 32400
23 23 2 3
T 4 − 56 T 3 + ⋯ + 144400 T^{4} - 56 T^{3} + \cdots + 144400 T 4 − 5 6 T 3 + ⋯ + 1 4 4 4 0 0
T^4 - 56*T^3 + 1568*T^2 - 21280*T + 144400
29 29 2 9
T 4 + 1236 T 2 + 900 T^{4} + 1236T^{2} + 900 T 4 + 1 2 3 6 T 2 + 9 0 0
T^4 + 1236*T^2 + 900
31 31 3 1
( T 2 + 8 T − 200 ) 2 (T^{2} + 8 T - 200)^{2} ( T 2 + 8 T − 2 0 0 ) 2
(T^2 + 8*T - 200)^2
37 37 3 7
T 4 + 64 T 3 + ⋯ + 211600 T^{4} + 64 T^{3} + \cdots + 211600 T 4 + 6 4 T 3 + ⋯ + 2 1 1 6 0 0
T^4 + 64*T^3 + 2048*T^2 - 29440*T + 211600
41 41 4 1
( T 2 + 28 T − 20 ) 2 (T^{2} + 28 T - 20)^{2} ( T 2 + 2 8 T − 2 0 ) 2
(T^2 + 28*T - 20)^2
43 43 4 3
T 4 − 8 T 3 + ⋯ + 1420864 T^{4} - 8 T^{3} + \cdots + 1420864 T 4 − 8 T 3 + ⋯ + 1 4 2 0 8 6 4
T^4 - 8*T^3 + 32*T^2 + 9536*T + 1420864
47 47 4 7
T 4 − 128 T 3 + ⋯ + 3055504 T^{4} - 128 T^{3} + \cdots + 3055504 T 4 − 1 2 8 T 3 + ⋯ + 3 0 5 5 5 0 4
T^4 - 128*T^3 + 8192*T^2 - 223744*T + 3055504
53 53 5 3
T 4 + 56 T 3 + ⋯ + 1600 T^{4} + 56 T^{3} + \cdots + 1600 T 4 + 5 6 T 3 + ⋯ + 1 6 0 0
T^4 + 56*T^3 + 1568*T^2 - 2240*T + 1600
59 59 5 9
T 4 + 14124 T 2 + 19980900 T^{4} + 14124 T^{2} + 19980900 T 4 + 1 4 1 2 4 T 2 + 1 9 9 8 0 9 0 0
T^4 + 14124*T^2 + 19980900
61 61 6 1
( T 2 + 100 T + 556 ) 2 (T^{2} + 100 T + 556)^{2} ( T 2 + 1 0 0 T + 5 5 6 ) 2
(T^2 + 100*T + 556)^2
67 67 6 7
T 4 − 200 T 3 + ⋯ + 24522304 T^{4} - 200 T^{3} + \cdots + 24522304 T 4 − 2 0 0 T 3 + ⋯ + 2 4 5 2 2 3 0 4
T^4 - 200*T^3 + 20000*T^2 - 990400*T + 24522304
71 71 7 1
( T + 68 ) 4 (T + 68)^{4} ( T + 6 8 ) 4
(T + 68)^4
73 73 7 3
T 4 − 76 T 3 + ⋯ + 38316100 T^{4} - 76 T^{3} + \cdots + 38316100 T 4 − 7 6 T 3 + ⋯ + 3 8 3 1 6 1 0 0
T^4 - 76*T^3 + 2888*T^2 + 470440*T + 38316100
79 79 7 9
( T 2 + 600 ) 2 (T^{2} + 600)^{2} ( T 2 + 6 0 0 ) 2
(T^2 + 600)^2
83 83 8 3
T 4 − 16 T 3 + ⋯ + 309136 T^{4} - 16 T^{3} + \cdots + 309136 T 4 − 1 6 T 3 + ⋯ + 3 0 9 1 3 6
T^4 - 16*T^3 + 128*T^2 + 8896*T + 309136
89 89 8 9
T 4 + 15624 T 2 + 59907600 T^{4} + 15624 T^{2} + 59907600 T 4 + 1 5 6 2 4 T 2 + 5 9 9 0 7 6 0 0
T^4 + 15624*T^2 + 59907600
97 97 9 7
T 4 + 20 T 3 + ⋯ + 515524 T^{4} + 20 T^{3} + \cdots + 515524 T 4 + 2 0 T 3 + ⋯ + 5 1 5 5 2 4
T^4 + 20*T^3 + 200*T^2 - 14360*T + 515524
show more
show less