L(s) = 1 | + (2.15 + 4.72i)3-s + 5·5-s − 8.15i·7-s + (−17.6 + 20.3i)9-s − 4.17i·11-s + 26.1i·13-s + (10.7 + 23.6i)15-s − 107. i·17-s + 89.1·19-s + (38.5 − 17.5i)21-s + 49.7·23-s + 25·25-s + (−134. − 39.6i)27-s + 187.·29-s + 135. i·31-s + ⋯ |
L(s) = 1 | + (0.415 + 0.909i)3-s + 0.447·5-s − 0.440i·7-s + (−0.655 + 0.755i)9-s − 0.114i·11-s + 0.557i·13-s + (0.185 + 0.406i)15-s − 1.53i·17-s + 1.07·19-s + (0.400 − 0.182i)21-s + 0.451·23-s + 0.200·25-s + (−0.959 − 0.282i)27-s + 1.20·29-s + 0.783i·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.349−0.936i)Λ(4−s)
Λ(s)=(=(960s/2ΓC(s+3/2)L(s)(0.349−0.936i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.349−0.936i
|
Analytic conductor: |
56.6418 |
Root analytic conductor: |
7.52607 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(671,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :3/2), 0.349−0.936i)
|
Particular Values
L(2) |
≈ |
2.650388736 |
L(21) |
≈ |
2.650388736 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−2.15−4.72i)T |
| 5 | 1−5T |
good | 7 | 1+8.15iT−343T2 |
| 11 | 1+4.17iT−1.33e3T2 |
| 13 | 1−26.1iT−2.19e3T2 |
| 17 | 1+107.iT−4.91e3T2 |
| 19 | 1−89.1T+6.85e3T2 |
| 23 | 1−49.7T+1.21e4T2 |
| 29 | 1−187.T+2.43e4T2 |
| 31 | 1−135.iT−2.97e4T2 |
| 37 | 1−407.iT−5.06e4T2 |
| 41 | 1−322.iT−6.89e4T2 |
| 43 | 1−243.T+7.95e4T2 |
| 47 | 1+394.T+1.03e5T2 |
| 53 | 1−348.T+1.48e5T2 |
| 59 | 1+89.5iT−2.05e5T2 |
| 61 | 1+281.iT−2.26e5T2 |
| 67 | 1+348.T+3.00e5T2 |
| 71 | 1+171.T+3.57e5T2 |
| 73 | 1−1.03e3T+3.89e5T2 |
| 79 | 1−644.iT−4.93e5T2 |
| 83 | 1+727.iT−5.71e5T2 |
| 89 | 1+126.iT−7.04e5T2 |
| 97 | 1−419.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.756239260158594241511524430939, −9.176195120502105358901541363967, −8.291846575360765169259008736627, −7.31258718791412637452113979412, −6.40859015317191665812509305458, −5.11011888922106702859209918599, −4.68385857369919516948857045956, −3.37179695661819461095279182071, −2.63063704893593190189158316941, −1.05363502155787139106088585975,
0.75013853924014134254938154622, 1.90566164916035556797731808706, 2.82030245837907961703791212606, 3.91939125501531757974404151038, 5.46473013588349903675262610910, 5.99872112024832940596192390004, 7.00880287464541336449692306785, 7.81499545203969280545845694234, 8.616118526160948332697621414157, 9.295713348879400393458129904136