Properties

Label 960.4.b.b
Level $960$
Weight $4$
Character orbit 960.b
Analytic conductor $56.642$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,4,Mod(671,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.671");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 960.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(56.6418336055\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 3472x^{12} + 2676096x^{8} + 573099300x^{4} + 31755240000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{23}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{3} + 5 q^{5} + (\beta_{7} - \beta_{4} - \beta_1) q^{7} + (\beta_{9} - 2) q^{9} + ( - \beta_{8} - \beta_{7} - \beta_{3}) q^{11} - \beta_{14} q^{13} - 5 \beta_{4} q^{15} + (\beta_{14} + 2 \beta_{12} - \beta_{10} + \cdots - 1) q^{17}+ \cdots + ( - 9 \beta_{15} - 4 \beta_{13} + \cdots + 60 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 80 q^{5} - 32 q^{9} - 248 q^{21} + 400 q^{25} + 192 q^{29} - 520 q^{33} - 160 q^{45} + 576 q^{49} + 960 q^{53} - 2056 q^{57} - 1992 q^{69} + 784 q^{73} + 4992 q^{77} - 3760 q^{81} - 4032 q^{93} + 1520 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 3472x^{12} + 2676096x^{8} + 573099300x^{4} + 31755240000 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -9491\nu^{14} - 33546752\nu^{10} - 27708714936\nu^{6} - 8590329053100\nu^{2} ) / 14972808163500 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 4231\nu^{12} + 13092190\nu^{8} + 6863423634\nu^{4} + 625475850885 ) / 13611643785 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 28473 \nu^{15} + 350020 \nu^{14} - 100640256 \nu^{11} + 621724840 \nu^{10} + \cdots + 179673697962000 \nu ) / 179673697962000 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 28473 \nu^{15} + 1672642 \nu^{14} - 100640256 \nu^{11} + 5623847224 \nu^{10} + \cdots + 179673697962000 \nu ) / 359347395924000 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 9491 \nu^{15} - 6020080 \nu^{12} + 33546752 \nu^{11} - 20452693360 \nu^{8} + \cdots - 17\!\cdots\!00 ) / 29945616327000 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 9491 \nu^{15} - 3010040 \nu^{12} - 33546752 \nu^{11} - 10226346680 \nu^{8} + \cdots - 854413921053000 ) / 14972808163500 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 9491 \nu^{15} + 1739994 \nu^{14} - 33546752 \nu^{11} + 5643774168 \nu^{10} + \cdots + 59891232654000 \nu ) / 119782465308000 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 28473 \nu^{15} + 1672642 \nu^{14} + 100640256 \nu^{11} + 5623847224 \nu^{10} + \cdots - 179673697962000 \nu ) / 119782465308000 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 836321 \nu^{15} + 9030120 \nu^{13} - 1782000 \nu^{12} + 2811923612 \nu^{11} + \cdots - 35\!\cdots\!00 ) / 179673697962000 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 836321 \nu^{15} - 9030120 \nu^{13} + 34338480 \nu^{12} - 2811923612 \nu^{11} + \cdots + 66\!\cdots\!00 ) / 179673697962000 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 8826043 \nu^{15} - 5359602 \nu^{14} + 75804960 \nu^{13} - 30043408096 \nu^{11} + \cdots + 31\!\cdots\!00 \nu ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 4455731 \nu^{15} - 37902480 \nu^{13} - 83773800 \nu^{12} - 15172664432 \nu^{11} + \cdots - 12\!\cdots\!00 ) / 539021093886000 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 1701115 \nu^{15} - 56946 \nu^{14} + 18060240 \nu^{13} - 5724487480 \nu^{11} + \cdots + 51\!\cdots\!00 \nu ) / 179673697962000 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 6244177 \nu^{15} - 85255500 \nu^{13} - 20426779144 \nu^{11} - 276078217800 \nu^{9} + \cdots - 15\!\cdots\!00 \nu ) / 539021093886000 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 3564376 \nu^{15} + 85419 \nu^{14} + 58165140 \nu^{13} - 11387166772 \nu^{11} + \cdots + 70\!\cdots\!00 \nu ) / 269510546943000 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -2\beta_{8} - \beta_{6} + \beta_{5} + 6\beta_{4} ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{8} - 6\beta_{7} + 6\beta_{3} - 75\beta_1 ) / 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 12 \beta_{13} + 18 \beta_{12} + 18 \beta_{11} - 12 \beta_{10} + 12 \beta_{9} + 74 \beta_{8} + \cdots - 9 ) / 12 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -174\beta_{10} - 174\beta_{9} - 43\beta_{6} - 86\beta_{5} + 18\beta_{2} - 5208 ) / 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 36 \beta_{15} - 72 \beta_{14} - 858 \beta_{13} - 1116 \beta_{12} + 1116 \beta_{11} + 894 \beta_{10} + \cdots + 558 ) / 12 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -2633\beta_{8} + 6009\beta_{7} - 5220\beta_{4} - 4344\beta_{3} + 28020\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 1665 \beta_{15} - 3330 \beta_{14} + 24261 \beta_{13} - 29394 \beta_{12} - 29394 \beta_{11} + \cdots + 14697 ) / 6 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 212937\beta_{10} + 212937\beta_{9} + 36209\beta_{6} + 72418\beta_{5} - 53874\beta_{2} + 5026944 ) / 3 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 107748 \beta_{15} + 215496 \beta_{14} + 1275864 \beta_{13} + 1493118 \beta_{12} - 1493118 \beta_{11} + \cdots - 746559 ) / 6 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 7202168\beta_{8} - 16563174\beta_{7} + 17223930\beta_{4} + 10472874\beta_{3} - 62245920\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 6090300 \beta_{15} + 12180600 \beta_{14} - 65205726 \beta_{13} + 75017844 \beta_{12} + 75017844 \beta_{11} + \cdots - 37508922 ) / 6 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 517772112 \beta_{10} - 517772112 \beta_{9} - 77166509 \beta_{6} - 154333018 \beta_{5} + \cdots - 11774469009 ) / 3 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 161756739 \beta_{15} - 323513478 \beta_{14} - 1645330287 \beta_{13} - 1876829814 \beta_{12} + \cdots + 938414907 ) / 3 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 18222259178 \beta_{8} + 42358499214 \beta_{7} - 45639807840 \beta_{4} - 25692734454 \beta_{3} + 150447844695 \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 8332882380 \beta_{15} - 16665764760 \beta_{14} + 82538255208 \beta_{13} - 93743968122 \beta_{12} + \cdots + 46871984061 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
671.1
4.99314 + 4.99314i
4.99314 4.99314i
3.61508 3.61508i
3.61508 + 3.61508i
2.71061 2.71061i
2.71061 + 2.71061i
2.15693 + 2.15693i
2.15693 2.15693i
−2.15693 2.15693i
−2.15693 + 2.15693i
−2.71061 + 2.71061i
−2.71061 2.71061i
−3.61508 + 3.61508i
−3.61508 3.61508i
−4.99314 4.99314i
−4.99314 + 4.99314i
0 −4.99314 1.43824i 0 5.00000 0 16.1856i 0 22.8629 + 14.3627i 0
671.2 0 −4.99314 + 1.43824i 0 5.00000 0 16.1856i 0 22.8629 14.3627i 0
671.3 0 −3.61508 3.73245i 0 5.00000 0 29.1389i 0 −0.862344 + 26.9862i 0
671.4 0 −3.61508 + 3.73245i 0 5.00000 0 29.1389i 0 −0.862344 26.9862i 0
671.5 0 −2.71061 4.43313i 0 5.00000 0 7.10557i 0 −12.3052 + 24.0329i 0
671.6 0 −2.71061 + 4.43313i 0 5.00000 0 7.10557i 0 −12.3052 24.0329i 0
671.7 0 −2.15693 4.72733i 0 5.00000 0 8.15228i 0 −17.6953 + 20.3930i 0
671.8 0 −2.15693 + 4.72733i 0 5.00000 0 8.15228i 0 −17.6953 20.3930i 0
671.9 0 2.15693 4.72733i 0 5.00000 0 8.15228i 0 −17.6953 20.3930i 0
671.10 0 2.15693 + 4.72733i 0 5.00000 0 8.15228i 0 −17.6953 + 20.3930i 0
671.11 0 2.71061 4.43313i 0 5.00000 0 7.10557i 0 −12.3052 24.0329i 0
671.12 0 2.71061 + 4.43313i 0 5.00000 0 7.10557i 0 −12.3052 + 24.0329i 0
671.13 0 3.61508 3.73245i 0 5.00000 0 29.1389i 0 −0.862344 26.9862i 0
671.14 0 3.61508 + 3.73245i 0 5.00000 0 29.1389i 0 −0.862344 + 26.9862i 0
671.15 0 4.99314 1.43824i 0 5.00000 0 16.1856i 0 22.8629 14.3627i 0
671.16 0 4.99314 + 1.43824i 0 5.00000 0 16.1856i 0 22.8629 + 14.3627i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 671.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
24.f even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.4.b.b yes 16
3.b odd 2 1 960.4.b.a 16
4.b odd 2 1 inner 960.4.b.b yes 16
8.b even 2 1 960.4.b.a 16
8.d odd 2 1 960.4.b.a 16
12.b even 2 1 960.4.b.a 16
24.f even 2 1 inner 960.4.b.b yes 16
24.h odd 2 1 inner 960.4.b.b yes 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
960.4.b.a 16 3.b odd 2 1
960.4.b.a 16 8.b even 2 1
960.4.b.a 16 8.d odd 2 1
960.4.b.a 16 12.b even 2 1
960.4.b.b yes 16 1.a even 1 1 trivial
960.4.b.b yes 16 4.b odd 2 1 inner
960.4.b.b yes 16 24.f even 2 1 inner
960.4.b.b yes 16 24.h odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(960, [\chi])\):

\( T_{7}^{8} + 1228T_{7}^{6} + 355728T_{7}^{4} + 29741776T_{7}^{2} + 746382400 \) Copy content Toggle raw display
\( T_{29}^{4} - 48T_{29}^{3} - 37488T_{29}^{2} + 1914544T_{29} + 39321360 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( T^{16} + \cdots + 282429536481 \) Copy content Toggle raw display
$5$ \( (T - 5)^{16} \) Copy content Toggle raw display
$7$ \( (T^{8} + 1228 T^{6} + \cdots + 746382400)^{2} \) Copy content Toggle raw display
$11$ \( (T^{8} + 5328 T^{6} + \cdots + 20666937600)^{2} \) Copy content Toggle raw display
$13$ \( (T^{8} + \cdots + 5700677875200)^{2} \) Copy content Toggle raw display
$17$ \( (T^{8} + \cdots + 430656937920000)^{2} \) Copy content Toggle raw display
$19$ \( (T^{8} + \cdots + 420208715520000)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} + \cdots + 26\!\cdots\!00)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 48 T^{3} + \cdots + 39321360)^{4} \) Copy content Toggle raw display
$31$ \( (T^{8} + \cdots + 21\!\cdots\!00)^{2} \) Copy content Toggle raw display
$37$ \( (T^{8} + \cdots + 35\!\cdots\!00)^{2} \) Copy content Toggle raw display
$41$ \( (T^{8} + \cdots + 11\!\cdots\!00)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} + \cdots + 769198518000000)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} + \cdots + 16\!\cdots\!00)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 240 T^{3} + \cdots - 1424598000)^{4} \) Copy content Toggle raw display
$59$ \( (T^{8} + \cdots + 71\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} + \cdots + 13\!\cdots\!00)^{2} \) Copy content Toggle raw display
$67$ \( (T^{8} + \cdots + 63\!\cdots\!00)^{2} \) Copy content Toggle raw display
$71$ \( (T^{8} + \cdots + 14\!\cdots\!00)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} - 196 T^{3} + \cdots - 801702800)^{4} \) Copy content Toggle raw display
$79$ \( (T^{8} + \cdots + 56\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( (T^{8} + \cdots + 19\!\cdots\!00)^{2} \) Copy content Toggle raw display
$89$ \( (T^{8} + \cdots + 16\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} - 380 T^{3} + \cdots + 191786509040)^{4} \) Copy content Toggle raw display
show more
show less