L(s) = 1 | + (3.61 + 3.73i)3-s + 5·5-s + 29.1i·7-s + (−0.862 + 26.9i)9-s − 37.6i·11-s − 58.2i·13-s + (18.0 + 18.6i)15-s + 73.3i·17-s − 95.1·19-s + (−108. + 105. i)21-s − 189.·23-s + 25·25-s + (−103. + 94.3i)27-s + 68.9·29-s + 264. i·31-s + ⋯ |
L(s) = 1 | + (0.695 + 0.718i)3-s + 0.447·5-s + 1.57i·7-s + (−0.0319 + 0.999i)9-s − 1.03i·11-s − 1.24i·13-s + (0.311 + 0.321i)15-s + 1.04i·17-s − 1.14·19-s + (−1.13 + 1.09i)21-s − 1.72·23-s + 0.200·25-s + (−0.740 + 0.672i)27-s + 0.441·29-s + 1.53i·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(−0.999−0.0159i)Λ(4−s)
Λ(s)=(=(960s/2ΓC(s+3/2)L(s)(−0.999−0.0159i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
−0.999−0.0159i
|
Analytic conductor: |
56.6418 |
Root analytic conductor: |
7.52607 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(671,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :3/2), −0.999−0.0159i)
|
Particular Values
L(2) |
≈ |
1.506851822 |
L(21) |
≈ |
1.506851822 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−3.61−3.73i)T |
| 5 | 1−5T |
good | 7 | 1−29.1iT−343T2 |
| 11 | 1+37.6iT−1.33e3T2 |
| 13 | 1+58.2iT−2.19e3T2 |
| 17 | 1−73.3iT−4.91e3T2 |
| 19 | 1+95.1T+6.85e3T2 |
| 23 | 1+189.T+1.21e4T2 |
| 29 | 1−68.9T+2.43e4T2 |
| 31 | 1−264.iT−2.97e4T2 |
| 37 | 1−338.iT−5.06e4T2 |
| 41 | 1+145.iT−6.89e4T2 |
| 43 | 1+51.9T+7.95e4T2 |
| 47 | 1+173.T+1.03e5T2 |
| 53 | 1−212.T+1.48e5T2 |
| 59 | 1+699.iT−2.05e5T2 |
| 61 | 1−292.iT−2.26e5T2 |
| 67 | 1+919.T+3.00e5T2 |
| 71 | 1−563.T+3.57e5T2 |
| 73 | 1+11.2T+3.89e5T2 |
| 79 | 1−680.iT−4.93e5T2 |
| 83 | 1+696.iT−5.71e5T2 |
| 89 | 1+1.64e3iT−7.04e5T2 |
| 97 | 1+437.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.21125488860315244937157217284, −9.041038573800162832041148683429, −8.391093636513222076446908087745, −8.142160308822461397553845980671, −6.31667740219769161595532100801, −5.74702051948455585336677307242, −4.89946504811180562258810703530, −3.57682885958326854348602605245, −2.77185807983605420315793285482, −1.82524176272505236250445245900,
0.30705335429984263348087330347, 1.65128619543445664016800485411, 2.40816526545133898897937674873, 3.99872456571999393800814452250, 4.40056228248010923041117845510, 6.08949462710938116548485799934, 6.90994222789457060507435739168, 7.39906595958231244694620134687, 8.247805692812581094896998729109, 9.419868032531057935245703291298