L(s) = 1 | + (3.61 + 3.73i)3-s + 5·5-s + 29.1i·7-s + (−0.862 + 26.9i)9-s − 37.6i·11-s − 58.2i·13-s + (18.0 + 18.6i)15-s + 73.3i·17-s − 95.1·19-s + (−108. + 105. i)21-s − 189.·23-s + 25·25-s + (−103. + 94.3i)27-s + 68.9·29-s + 264. i·31-s + ⋯ |
L(s) = 1 | + (0.695 + 0.718i)3-s + 0.447·5-s + 1.57i·7-s + (−0.0319 + 0.999i)9-s − 1.03i·11-s − 1.24i·13-s + (0.311 + 0.321i)15-s + 1.04i·17-s − 1.14·19-s + (−1.13 + 1.09i)21-s − 1.72·23-s + 0.200·25-s + (−0.740 + 0.672i)27-s + 0.441·29-s + 1.53i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0159i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0159i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.506851822\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.506851822\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-3.61 - 3.73i)T \) |
| 5 | \( 1 - 5T \) |
good | 7 | \( 1 - 29.1iT - 343T^{2} \) |
| 11 | \( 1 + 37.6iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 58.2iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 73.3iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 95.1T + 6.85e3T^{2} \) |
| 23 | \( 1 + 189.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 68.9T + 2.43e4T^{2} \) |
| 31 | \( 1 - 264. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 338. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 145. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 51.9T + 7.95e4T^{2} \) |
| 47 | \( 1 + 173.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 212.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 699. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 292. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 919.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 563.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 11.2T + 3.89e5T^{2} \) |
| 79 | \( 1 - 680. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 696. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.64e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 437.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21125488860315244937157217284, −9.041038573800162832041148683429, −8.391093636513222076446908087745, −8.142160308822461397553845980671, −6.31667740219769161595532100801, −5.74702051948455585336677307242, −4.89946504811180562258810703530, −3.57682885958326854348602605245, −2.77185807983605420315793285482, −1.82524176272505236250445245900,
0.30705335429984263348087330347, 1.65128619543445664016800485411, 2.40816526545133898897937674873, 3.99872456571999393800814452250, 4.40056228248010923041117845510, 6.08949462710938116548485799934, 6.90994222789457060507435739168, 7.39906595958231244694620134687, 8.247805692812581094896998729109, 9.419868032531057935245703291298