L(s) = 1 | + 12·2-s + 70·4-s + 4·7-s + 264·8-s + 6·9-s + 48·14-s + 729·16-s + 72·18-s − 4·19-s + 10·25-s + 280·28-s + 1.60e3·32-s + 420·36-s − 48·38-s − 12·41-s − 24·47-s + 34·49-s + 120·50-s + 1.05e3·56-s − 12·59-s + 24·63-s + 3.06e3·64-s − 24·67-s − 12·71-s + 1.58e3·72-s − 280·76-s + 22·81-s + ⋯ |
L(s) = 1 | + 8.48·2-s + 35·4-s + 1.51·7-s + 93.3·8-s + 2·9-s + 12.8·14-s + 182.·16-s + 16.9·18-s − 0.917·19-s + 2·25-s + 52.9·28-s + 284.·32-s + 70·36-s − 7.78·38-s − 1.87·41-s − 3.50·47-s + 34/7·49-s + 16.9·50-s + 141.·56-s − 1.56·59-s + 3.02·63-s + 383.·64-s − 2.93·67-s − 1.42·71-s + 186.·72-s − 32.1·76-s + 22/9·81-s + ⋯ |
Λ(s)=(=((3116)s/2ΓC(s)8L(s)Λ(2−s)
Λ(s)=(=((3116)s/2ΓC(s+1/2)8L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
872.2199682 |
L(21) |
≈ |
872.2199682 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 31 | 1 |
good | 2 | (1−3T+5T2−3pT3+p2T4)4 |
| 3 | 1−2pT2+14T4−8pT6+79T8−8p3T10+14p4T12−2p7T14+p8T16 |
| 5 | (1−pT2)4(1+pT2+p2T4)2 |
| 7 | (1−5T+pT2)4(1+4T+pT2)4 |
| 11 | (1−4T2−105T4−4p2T6+p4T8)2 |
| 13 | 1+2T2+70T4−808T6−24881T8−808p2T10+70p4T12+2p6T14+p8T16 |
| 17 | 1−54T2+1654T4−36936T6+666399T8−36936p2T10+1654p4T12−54p6T14+p8T16 |
| 19 | (1−7T+pT2)4(1+8T+pT2)4 |
| 23 | (1+38T2+1014T4+38p2T6+p4T8)2 |
| 29 | (1+102T2+4238T4+102p2T6+p4T8)2 |
| 37 | (1−56T2+1767T4−56p2T6+p4T8)2 |
| 41 | (1+6T−35T2−66T3+1884T4−66pT5−35p2T6+6p3T7+p4T8)2 |
| 43 | 1−78T2+3070T4+53352T6−5583921T8+53352p2T10+3070p4T12−78p6T14+p8T16 |
| 47 | (1+6T+58T2+6pT3+p2T4)4 |
| 53 | 1+4T2+874T4−25904T6−7199261T8−25904p2T10+874p4T12+4p6T14+p8T16 |
| 59 | (1+6T−11T2−426T3−3396T4−426pT5−11p2T6+6p3T7+p4T8)2 |
| 61 | (1+30T2+62T4+30p2T6+p4T8)2 |
| 67 | (1+6T−31T2+6pT3+p2T4)4 |
| 71 | (1+6T−95T2−66T3+9564T4−66pT5−95p2T6+6p3T7+p4T8)2 |
| 73 | (1−128T2+11055T4−128p2T6+p4T8)2 |
| 79 | 1−190T2+18238T4−1022200T6+54800863T8−1022200p2T10+18238p4T12−190p6T14+p8T16 |
| 83 | (1−156T2+17447T4−156p2T6+p4T8)2 |
| 89 | (1+86T2+7566T4+86p2T6+p4T8)2 |
| 97 | (1+7T+pT2)8 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.45616205812294243222859517793, −4.29239752928085699878730340213, −4.18573898230919691209262755907, −3.92017055504253646069073535816, −3.88430349662771912351977390043, −3.79629688923818590413286925721, −3.76236406528942971547124724460, −3.63720423363257536236207110281, −3.60031220386006664996698464801, −3.10340142104226912934817451413, −3.09020429810435355713124070890, −3.04956746895836336875379014082, −3.01279340836675752018292135730, −2.89043964156180262728687126617, −2.66471075011528838648739515231, −2.36369550693743985738672673935, −2.35094707746500028249797768808, −2.21264936014318618258699664624, −1.65059763698703105866690815670, −1.59923253466223188326047614869, −1.49297488491669257150666899869, −1.48445986689059585449791403409, −1.30001055532120730369052752256, −0.993279212698727776238547259557, −0.32377480651846747146300828799,
0.32377480651846747146300828799, 0.993279212698727776238547259557, 1.30001055532120730369052752256, 1.48445986689059585449791403409, 1.49297488491669257150666899869, 1.59923253466223188326047614869, 1.65059763698703105866690815670, 2.21264936014318618258699664624, 2.35094707746500028249797768808, 2.36369550693743985738672673935, 2.66471075011528838648739515231, 2.89043964156180262728687126617, 3.01279340836675752018292135730, 3.04956746895836336875379014082, 3.09020429810435355713124070890, 3.10340142104226912934817451413, 3.60031220386006664996698464801, 3.63720423363257536236207110281, 3.76236406528942971547124724460, 3.79629688923818590413286925721, 3.88430349662771912351977390043, 3.92017055504253646069073535816, 4.18573898230919691209262755907, 4.29239752928085699878730340213, 4.45616205812294243222859517793
Plot not available for L-functions of degree greater than 10.