Properties

Label 961.2.c.h.439.1
Level $961$
Weight $2$
Character 961.439
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(439,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.439");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.207360000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 6x^{6} + 32x^{4} + 24x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 439.1
Root \(1.14412 - 1.98168i\) of defining polynomial
Character \(\chi\) \(=\) 961.439
Dual form 961.2.c.h.521.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.381966 q^{2} +(-1.14412 + 1.98168i) q^{3} -1.85410 q^{4} +(1.11803 + 1.93649i) q^{5} +(-0.437016 + 0.756934i) q^{6} +(0.500000 - 0.866025i) q^{7} -1.47214 q^{8} +(-1.11803 - 1.93649i) q^{9} +(0.427051 + 0.739674i) q^{10} +(-2.12132 - 3.67423i) q^{11} +(2.12132 - 3.67423i) q^{12} +(-3.43237 - 5.94504i) q^{13} +(0.190983 - 0.330792i) q^{14} -5.11667 q^{15} +3.14590 q^{16} +(-0.270091 + 0.467811i) q^{17} +(-0.427051 - 0.739674i) q^{18} +(-0.500000 + 0.866025i) q^{19} +(-2.07295 - 3.59045i) q^{20} +(1.14412 + 1.98168i) q^{21} +(-0.810272 - 1.40343i) q^{22} +6.86474 q^{23} +(1.68430 - 2.91730i) q^{24} +(-1.31105 - 2.27080i) q^{26} -1.74806 q^{27} +(-0.927051 + 1.60570i) q^{28} -3.70246 q^{29} -1.95440 q^{30} +4.14590 q^{32} +9.70820 q^{33} +(-0.103165 + 0.178688i) q^{34} +2.23607 q^{35} +(2.07295 + 3.59045i) q^{36} +(-2.12132 + 3.67423i) q^{37} +(-0.190983 + 0.330792i) q^{38} +15.7082 q^{39} +(-1.64590 - 2.85078i) q^{40} +(-3.73607 - 6.47106i) q^{41} +(0.437016 + 0.756934i) q^{42} +(0.103165 - 0.178688i) q^{43} +(3.93314 + 6.81241i) q^{44} +(2.50000 - 4.33013i) q^{45} +2.62210 q^{46} +3.70820 q^{47} +(-3.59929 + 6.23416i) q^{48} +(3.00000 + 5.19615i) q^{49} +(-0.618034 - 1.07047i) q^{51} +(6.36396 + 11.0227i) q^{52} +(-2.62210 - 4.54160i) q^{53} -0.667701 q^{54} +(4.74342 - 8.21584i) q^{55} +(-0.736068 + 1.27491i) q^{56} +(-1.14412 - 1.98168i) q^{57} -1.41421 q^{58} +(2.97214 - 5.14789i) q^{59} +9.48683 q^{60} +4.44897 q^{61} -2.23607 q^{63} -4.70820 q^{64} +(7.67501 - 13.2935i) q^{65} +3.70820 q^{66} +(-3.00000 - 5.19615i) q^{67} +(0.500776 - 0.867369i) q^{68} +(-7.85410 + 13.6037i) q^{69} +0.854102 q^{70} +(-3.73607 - 6.47106i) q^{71} +(1.64590 + 2.85078i) q^{72} +(-2.12132 - 3.67423i) q^{73} +(-0.810272 + 1.40343i) q^{74} +(0.927051 - 1.60570i) q^{76} -4.24264 q^{77} +6.00000 q^{78} +(5.55369 - 9.61927i) q^{79} +(3.51722 + 6.09201i) q^{80} +(5.35410 - 9.27358i) q^{81} +(-1.42705 - 2.47172i) q^{82} +(-1.58114 - 2.73861i) q^{83} +(-2.12132 - 3.67423i) q^{84} -1.20788 q^{85} +(0.0394057 - 0.0682527i) q^{86} +(4.23607 - 7.33708i) q^{87} +(3.12287 + 5.40897i) q^{88} -5.86319 q^{89} +(0.954915 - 1.65396i) q^{90} -6.86474 q^{91} -12.7279 q^{92} +1.41641 q^{94} -2.23607 q^{95} +(-4.74342 + 8.21584i) q^{96} -7.00000 q^{97} +(1.14590 + 1.98475i) q^{98} +(-4.74342 + 8.21584i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{2} + 12 q^{4} + 4 q^{7} + 24 q^{8} - 10 q^{10} + 6 q^{14} + 52 q^{16} + 10 q^{18} - 4 q^{19} - 30 q^{20} + 6 q^{28} + 60 q^{32} + 24 q^{33} + 30 q^{36} - 6 q^{38} + 72 q^{39} - 40 q^{40} - 12 q^{41}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.381966 0.270091 0.135045 0.990839i \(-0.456882\pi\)
0.135045 + 0.990839i \(0.456882\pi\)
\(3\) −1.14412 + 1.98168i −0.660560 + 1.14412i 0.319909 + 0.947448i \(0.396348\pi\)
−0.980469 + 0.196675i \(0.936986\pi\)
\(4\) −1.85410 −0.927051
\(5\) 1.11803 + 1.93649i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) −0.437016 + 0.756934i −0.178411 + 0.309017i
\(7\) 0.500000 0.866025i 0.188982 0.327327i −0.755929 0.654654i \(-0.772814\pi\)
0.944911 + 0.327327i \(0.106148\pi\)
\(8\) −1.47214 −0.520479
\(9\) −1.11803 1.93649i −0.372678 0.645497i
\(10\) 0.427051 + 0.739674i 0.135045 + 0.233905i
\(11\) −2.12132 3.67423i −0.639602 1.10782i −0.985520 0.169559i \(-0.945766\pi\)
0.345918 0.938265i \(-0.387568\pi\)
\(12\) 2.12132 3.67423i 0.612372 1.06066i
\(13\) −3.43237 5.94504i −0.951968 1.64886i −0.741159 0.671329i \(-0.765724\pi\)
−0.210808 0.977527i \(-0.567610\pi\)
\(14\) 0.190983 0.330792i 0.0510424 0.0884080i
\(15\) −5.11667 −1.32112
\(16\) 3.14590 0.786475
\(17\) −0.270091 + 0.467811i −0.0655066 + 0.113461i −0.896919 0.442196i \(-0.854200\pi\)
0.831412 + 0.555656i \(0.187533\pi\)
\(18\) −0.427051 0.739674i −0.100657 0.174343i
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i −0.917663 0.397360i \(-0.869927\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) −2.07295 3.59045i −0.463525 0.802850i
\(21\) 1.14412 + 1.98168i 0.249668 + 0.432438i
\(22\) −0.810272 1.40343i −0.172751 0.299213i
\(23\) 6.86474 1.43140 0.715698 0.698410i \(-0.246109\pi\)
0.715698 + 0.698410i \(0.246109\pi\)
\(24\) 1.68430 2.91730i 0.343807 0.595492i
\(25\) 0 0
\(26\) −1.31105 2.27080i −0.257118 0.445341i
\(27\) −1.74806 −0.336415
\(28\) −0.927051 + 1.60570i −0.175196 + 0.303449i
\(29\) −3.70246 −0.687529 −0.343765 0.939056i \(-0.611702\pi\)
−0.343765 + 0.939056i \(0.611702\pi\)
\(30\) −1.95440 −0.356822
\(31\) 0 0
\(32\) 4.14590 0.732898
\(33\) 9.70820 1.68998
\(34\) −0.103165 + 0.178688i −0.0176927 + 0.0306447i
\(35\) 2.23607 0.377964
\(36\) 2.07295 + 3.59045i 0.345492 + 0.598409i
\(37\) −2.12132 + 3.67423i −0.348743 + 0.604040i −0.986026 0.166589i \(-0.946725\pi\)
0.637284 + 0.770629i \(0.280058\pi\)
\(38\) −0.190983 + 0.330792i −0.0309815 + 0.0536616i
\(39\) 15.7082 2.51533
\(40\) −1.64590 2.85078i −0.260239 0.450748i
\(41\) −3.73607 6.47106i −0.583476 1.01061i −0.995064 0.0992396i \(-0.968359\pi\)
0.411588 0.911370i \(-0.364974\pi\)
\(42\) 0.437016 + 0.756934i 0.0674330 + 0.116797i
\(43\) 0.103165 0.178688i 0.0157326 0.0272496i −0.858052 0.513563i \(-0.828325\pi\)
0.873785 + 0.486313i \(0.161659\pi\)
\(44\) 3.93314 + 6.81241i 0.592944 + 1.02701i
\(45\) 2.50000 4.33013i 0.372678 0.645497i
\(46\) 2.62210 0.386607
\(47\) 3.70820 0.540897 0.270449 0.962734i \(-0.412828\pi\)
0.270449 + 0.962734i \(0.412828\pi\)
\(48\) −3.59929 + 6.23416i −0.519513 + 0.899823i
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0 0
\(51\) −0.618034 1.07047i −0.0865421 0.149895i
\(52\) 6.36396 + 11.0227i 0.882523 + 1.52857i
\(53\) −2.62210 4.54160i −0.360173 0.623837i 0.627816 0.778361i \(-0.283949\pi\)
−0.987989 + 0.154524i \(0.950616\pi\)
\(54\) −0.667701 −0.0908626
\(55\) 4.74342 8.21584i 0.639602 1.10782i
\(56\) −0.736068 + 1.27491i −0.0983612 + 0.170367i
\(57\) −1.14412 1.98168i −0.151543 0.262480i
\(58\) −1.41421 −0.185695
\(59\) 2.97214 5.14789i 0.386939 0.670198i −0.605097 0.796152i \(-0.706866\pi\)
0.992036 + 0.125953i \(0.0401990\pi\)
\(60\) 9.48683 1.22474
\(61\) 4.44897 0.569632 0.284816 0.958582i \(-0.408067\pi\)
0.284816 + 0.958582i \(0.408067\pi\)
\(62\) 0 0
\(63\) −2.23607 −0.281718
\(64\) −4.70820 −0.588525
\(65\) 7.67501 13.2935i 0.951968 1.64886i
\(66\) 3.70820 0.456448
\(67\) −3.00000 5.19615i −0.366508 0.634811i 0.622509 0.782613i \(-0.286114\pi\)
−0.989017 + 0.147802i \(0.952780\pi\)
\(68\) 0.500776 0.867369i 0.0607280 0.105184i
\(69\) −7.85410 + 13.6037i −0.945523 + 1.63769i
\(70\) 0.854102 0.102085
\(71\) −3.73607 6.47106i −0.443390 0.767973i 0.554549 0.832151i \(-0.312891\pi\)
−0.997938 + 0.0641777i \(0.979558\pi\)
\(72\) 1.64590 + 2.85078i 0.193971 + 0.335968i
\(73\) −2.12132 3.67423i −0.248282 0.430037i 0.714767 0.699362i \(-0.246533\pi\)
−0.963049 + 0.269326i \(0.913199\pi\)
\(74\) −0.810272 + 1.40343i −0.0941922 + 0.163146i
\(75\) 0 0
\(76\) 0.927051 1.60570i 0.106340 0.184186i
\(77\) −4.24264 −0.483494
\(78\) 6.00000 0.679366
\(79\) 5.55369 9.61927i 0.624839 1.08225i −0.363733 0.931503i \(-0.618498\pi\)
0.988572 0.150749i \(-0.0481686\pi\)
\(80\) 3.51722 + 6.09201i 0.393237 + 0.681107i
\(81\) 5.35410 9.27358i 0.594900 1.03040i
\(82\) −1.42705 2.47172i −0.157591 0.272956i
\(83\) −1.58114 2.73861i −0.173553 0.300602i 0.766107 0.642713i \(-0.222191\pi\)
−0.939659 + 0.342111i \(0.888858\pi\)
\(84\) −2.12132 3.67423i −0.231455 0.400892i
\(85\) −1.20788 −0.131013
\(86\) 0.0394057 0.0682527i 0.00424923 0.00735988i
\(87\) 4.23607 7.33708i 0.454154 0.786618i
\(88\) 3.12287 + 5.40897i 0.332899 + 0.576598i
\(89\) −5.86319 −0.621496 −0.310748 0.950492i \(-0.600580\pi\)
−0.310748 + 0.950492i \(0.600580\pi\)
\(90\) 0.954915 1.65396i 0.100657 0.174343i
\(91\) −6.86474 −0.719620
\(92\) −12.7279 −1.32698
\(93\) 0 0
\(94\) 1.41641 0.146091
\(95\) −2.23607 −0.229416
\(96\) −4.74342 + 8.21584i −0.484123 + 0.838525i
\(97\) −7.00000 −0.710742 −0.355371 0.934725i \(-0.615646\pi\)
−0.355371 + 0.934725i \(0.615646\pi\)
\(98\) 1.14590 + 1.98475i 0.115753 + 0.200490i
\(99\) −4.74342 + 8.21584i −0.476731 + 0.825723i
\(100\) 0 0
\(101\) −2.23607 −0.222497 −0.111249 0.993793i \(-0.535485\pi\)
−0.111249 + 0.993793i \(0.535485\pi\)
\(102\) −0.236068 0.408882i −0.0233742 0.0404853i
\(103\) 1.35410 + 2.34537i 0.133424 + 0.231097i 0.924994 0.379981i \(-0.124070\pi\)
−0.791571 + 0.611078i \(0.790736\pi\)
\(104\) 5.05291 + 8.75190i 0.495479 + 0.858195i
\(105\) −2.55834 + 4.43117i −0.249668 + 0.432438i
\(106\) −1.00155 1.73474i −0.0972793 0.168493i
\(107\) 3.73607 6.47106i 0.361179 0.625581i −0.626976 0.779039i \(-0.715708\pi\)
0.988155 + 0.153458i \(0.0490409\pi\)
\(108\) 3.24109 0.311874
\(109\) −14.7082 −1.40879 −0.704395 0.709808i \(-0.748782\pi\)
−0.704395 + 0.709808i \(0.748782\pi\)
\(110\) 1.81182 3.13817i 0.172751 0.299213i
\(111\) −4.85410 8.40755i −0.460731 0.798009i
\(112\) 1.57295 2.72443i 0.148630 0.257434i
\(113\) 7.11803 + 12.3288i 0.669608 + 1.15980i 0.978014 + 0.208541i \(0.0668713\pi\)
−0.308405 + 0.951255i \(0.599795\pi\)
\(114\) −0.437016 0.756934i −0.0409303 0.0708934i
\(115\) 7.67501 + 13.2935i 0.715698 + 1.23963i
\(116\) 6.86474 0.637375
\(117\) −7.67501 + 13.2935i −0.709555 + 1.22899i
\(118\) 1.13525 1.96632i 0.104509 0.181014i
\(119\) 0.270091 + 0.467811i 0.0247592 + 0.0428842i
\(120\) 7.53244 0.687614
\(121\) −3.50000 + 6.06218i −0.318182 + 0.551107i
\(122\) 1.69936 0.153852
\(123\) 17.0981 1.54168
\(124\) 0 0
\(125\) 11.1803 1.00000
\(126\) −0.854102 −0.0760895
\(127\) −4.74342 + 8.21584i −0.420910 + 0.729038i −0.996029 0.0890323i \(-0.971623\pi\)
0.575119 + 0.818070i \(0.304956\pi\)
\(128\) −10.0902 −0.891853
\(129\) 0.236068 + 0.408882i 0.0207846 + 0.0360000i
\(130\) 2.93159 5.07767i 0.257118 0.445341i
\(131\) 9.70820 16.8151i 0.848210 1.46914i −0.0345946 0.999401i \(-0.511014\pi\)
0.882804 0.469741i \(-0.155653\pi\)
\(132\) −18.0000 −1.56670
\(133\) 0.500000 + 0.866025i 0.0433555 + 0.0750939i
\(134\) −1.14590 1.98475i −0.0989905 0.171457i
\(135\) −1.95440 3.38511i −0.168208 0.291344i
\(136\) 0.397610 0.688681i 0.0340948 0.0590539i
\(137\) −3.43237 5.94504i −0.293247 0.507919i 0.681329 0.731978i \(-0.261403\pi\)
−0.974576 + 0.224059i \(0.928069\pi\)
\(138\) −3.00000 + 5.19615i −0.255377 + 0.442326i
\(139\) 1.00155 0.0849505 0.0424752 0.999098i \(-0.486476\pi\)
0.0424752 + 0.999098i \(0.486476\pi\)
\(140\) −4.14590 −0.350392
\(141\) −4.24264 + 7.34847i −0.357295 + 0.618853i
\(142\) −1.42705 2.47172i −0.119755 0.207423i
\(143\) −14.5623 + 25.2227i −1.21776 + 2.10922i
\(144\) −3.51722 6.09201i −0.293102 0.507667i
\(145\) −4.13948 7.16978i −0.343765 0.595418i
\(146\) −0.810272 1.40343i −0.0670586 0.116149i
\(147\) −13.7295 −1.13239
\(148\) 3.93314 6.81241i 0.323302 0.559976i
\(149\) −6.70820 + 11.6190i −0.549557 + 0.951861i 0.448747 + 0.893659i \(0.351870\pi\)
−0.998305 + 0.0582028i \(0.981463\pi\)
\(150\) 0 0
\(151\) 3.03476 0.246965 0.123483 0.992347i \(-0.460594\pi\)
0.123483 + 0.992347i \(0.460594\pi\)
\(152\) 0.736068 1.27491i 0.0597030 0.103409i
\(153\) 1.20788 0.0976515
\(154\) −1.62054 −0.130587
\(155\) 0 0
\(156\) −29.1246 −2.33184
\(157\) −4.70820 −0.375756 −0.187878 0.982192i \(-0.560161\pi\)
−0.187878 + 0.982192i \(0.560161\pi\)
\(158\) 2.12132 3.67423i 0.168763 0.292306i
\(159\) 12.0000 0.951662
\(160\) 4.63525 + 8.02850i 0.366449 + 0.634708i
\(161\) 3.43237 5.94504i 0.270509 0.468535i
\(162\) 2.04508 3.54219i 0.160677 0.278301i
\(163\) −12.4164 −0.972528 −0.486264 0.873812i \(-0.661641\pi\)
−0.486264 + 0.873812i \(0.661641\pi\)
\(164\) 6.92705 + 11.9980i 0.540912 + 0.936887i
\(165\) 10.8541 + 18.7999i 0.844991 + 1.46357i
\(166\) −0.603941 1.04606i −0.0468749 0.0811898i
\(167\) 3.70246 6.41285i 0.286505 0.496241i −0.686468 0.727160i \(-0.740840\pi\)
0.972973 + 0.230919i \(0.0741732\pi\)
\(168\) −1.68430 2.91730i −0.129947 0.225075i
\(169\) −17.0623 + 29.5528i −1.31249 + 2.27329i
\(170\) −0.461370 −0.0353855
\(171\) 2.23607 0.170996
\(172\) −0.191279 + 0.331306i −0.0145849 + 0.0252618i
\(173\) −9.00000 15.5885i −0.684257 1.18517i −0.973670 0.227964i \(-0.926793\pi\)
0.289412 0.957205i \(-0.406540\pi\)
\(174\) 1.61803 2.80252i 0.122663 0.212458i
\(175\) 0 0
\(176\) −6.67346 11.5588i −0.503031 0.871275i
\(177\) 6.80098 + 11.7796i 0.511193 + 0.885412i
\(178\) −2.23954 −0.167860
\(179\) −8.21519 + 14.2291i −0.614032 + 1.06353i 0.376521 + 0.926408i \(0.377120\pi\)
−0.990553 + 0.137127i \(0.956213\pi\)
\(180\) −4.63525 + 8.02850i −0.345492 + 0.598409i
\(181\) −9.08922 15.7430i −0.675597 1.17017i −0.976294 0.216448i \(-0.930553\pi\)
0.300698 0.953720i \(-0.402781\pi\)
\(182\) −2.62210 −0.194363
\(183\) −5.09017 + 8.81643i −0.376276 + 0.651729i
\(184\) −10.1058 −0.745011
\(185\) −9.48683 −0.697486
\(186\) 0 0
\(187\) 2.29180 0.167593
\(188\) −6.87539 −0.501439
\(189\) −0.874032 + 1.51387i −0.0635765 + 0.110118i
\(190\) −0.854102 −0.0619631
\(191\) −7.11803 12.3288i −0.515043 0.892080i −0.999848 0.0174580i \(-0.994443\pi\)
0.484805 0.874622i \(-0.338891\pi\)
\(192\) 5.38676 9.33015i 0.388756 0.673345i
\(193\) 3.64590 6.31488i 0.262437 0.454555i −0.704452 0.709752i \(-0.748807\pi\)
0.966889 + 0.255197i \(0.0821403\pi\)
\(194\) −2.67376 −0.191965
\(195\) 17.5623 + 30.4188i 1.25766 + 2.17834i
\(196\) −5.56231 9.63420i −0.397308 0.688157i
\(197\) 3.70246 + 6.41285i 0.263789 + 0.456896i 0.967246 0.253842i \(-0.0816943\pi\)
−0.703456 + 0.710738i \(0.748361\pi\)
\(198\) −1.81182 + 3.13817i −0.128761 + 0.223020i
\(199\) 7.36551 + 12.7574i 0.522127 + 0.904351i 0.999669 + 0.0257418i \(0.00819477\pi\)
−0.477541 + 0.878609i \(0.658472\pi\)
\(200\) 0 0
\(201\) 13.7295 0.968402
\(202\) −0.854102 −0.0600944
\(203\) −1.85123 + 3.20642i −0.129931 + 0.225047i
\(204\) 1.14590 + 1.98475i 0.0802289 + 0.138961i
\(205\) 8.35410 14.4697i 0.583476 1.01061i
\(206\) 0.517221 + 0.895853i 0.0360365 + 0.0624170i
\(207\) −7.67501 13.2935i −0.533450 0.923963i
\(208\) −10.7979 18.7025i −0.748698 1.29678i
\(209\) 4.24264 0.293470
\(210\) −0.977198 + 1.69256i −0.0674330 + 0.116797i
\(211\) 2.50000 4.33013i 0.172107 0.298098i −0.767049 0.641588i \(-0.778276\pi\)
0.939156 + 0.343490i \(0.111609\pi\)
\(212\) 4.86163 + 8.42060i 0.333898 + 0.578329i
\(213\) 17.0981 1.17154
\(214\) 1.42705 2.47172i 0.0975512 0.168964i
\(215\) 0.461370 0.0314652
\(216\) 2.57339 0.175097
\(217\) 0 0
\(218\) −5.61803 −0.380501
\(219\) 9.70820 0.656020
\(220\) −8.79478 + 15.2330i −0.592944 + 1.02701i
\(221\) 3.70820 0.249441
\(222\) −1.85410 3.21140i −0.124439 0.215535i
\(223\) 10.9010 18.8812i 0.729988 1.26438i −0.226900 0.973918i \(-0.572859\pi\)
0.956888 0.290458i \(-0.0938077\pi\)
\(224\) 2.07295 3.59045i 0.138505 0.239897i
\(225\) 0 0
\(226\) 2.71885 + 4.70918i 0.180855 + 0.313250i
\(227\) −7.85410 13.6037i −0.521295 0.902910i −0.999693 0.0247665i \(-0.992116\pi\)
0.478398 0.878143i \(-0.341218\pi\)
\(228\) 2.12132 + 3.67423i 0.140488 + 0.243332i
\(229\) −2.12132 + 3.67423i −0.140181 + 0.242800i −0.927565 0.373663i \(-0.878102\pi\)
0.787384 + 0.616463i \(0.211435\pi\)
\(230\) 2.93159 + 5.07767i 0.193303 + 0.334811i
\(231\) 4.85410 8.40755i 0.319376 0.553176i
\(232\) 5.45052 0.357844
\(233\) −4.52786 −0.296630 −0.148315 0.988940i \(-0.547385\pi\)
−0.148315 + 0.988940i \(0.547385\pi\)
\(234\) −2.93159 + 5.07767i −0.191644 + 0.331937i
\(235\) 4.14590 + 7.18091i 0.270449 + 0.468431i
\(236\) −5.51064 + 9.54471i −0.358712 + 0.621308i
\(237\) 12.7082 + 22.0113i 0.825487 + 1.42978i
\(238\) 0.103165 + 0.178688i 0.00668723 + 0.0115826i
\(239\) 8.17578 + 14.1609i 0.528848 + 0.915991i 0.999434 + 0.0336370i \(0.0107090\pi\)
−0.470587 + 0.882354i \(0.655958\pi\)
\(240\) −16.0965 −1.03903
\(241\) −7.36551 + 12.7574i −0.474454 + 0.821779i −0.999572 0.0292505i \(-0.990688\pi\)
0.525118 + 0.851030i \(0.324021\pi\)
\(242\) −1.33688 + 2.31555i −0.0859380 + 0.148849i
\(243\) 9.62940 + 16.6786i 0.617727 + 1.06993i
\(244\) −8.24885 −0.528078
\(245\) −6.70820 + 11.6190i −0.428571 + 0.742307i
\(246\) 6.53089 0.416394
\(247\) 6.86474 0.436793
\(248\) 0 0
\(249\) 7.23607 0.458567
\(250\) 4.27051 0.270091
\(251\) 11.8782 20.5737i 0.749748 1.29860i −0.198195 0.980163i \(-0.563508\pi\)
0.947943 0.318439i \(-0.103159\pi\)
\(252\) 4.14590 0.261167
\(253\) −14.5623 25.2227i −0.915524 1.58573i
\(254\) −1.81182 + 3.13817i −0.113684 + 0.196906i
\(255\) 1.38197 2.39364i 0.0865421 0.149895i
\(256\) 5.56231 0.347644
\(257\) −11.9721 20.7363i −0.746801 1.29350i −0.949348 0.314225i \(-0.898255\pi\)
0.202547 0.979273i \(-0.435078\pi\)
\(258\) 0.0901699 + 0.156179i 0.00561374 + 0.00972328i
\(259\) 2.12132 + 3.67423i 0.131812 + 0.228306i
\(260\) −14.2302 + 24.6475i −0.882523 + 1.52857i
\(261\) 4.13948 + 7.16978i 0.256227 + 0.443798i
\(262\) 3.70820 6.42280i 0.229094 0.396802i
\(263\) 2.70091 0.166545 0.0832725 0.996527i \(-0.473463\pi\)
0.0832725 + 0.996527i \(0.473463\pi\)
\(264\) −14.2918 −0.879599
\(265\) 5.86319 10.1553i 0.360173 0.623837i
\(266\) 0.190983 + 0.330792i 0.0117099 + 0.0202822i
\(267\) 6.70820 11.6190i 0.410535 0.711068i
\(268\) 5.56231 + 9.63420i 0.339772 + 0.588502i
\(269\) −7.40492 12.8257i −0.451486 0.781996i 0.546993 0.837137i \(-0.315773\pi\)
−0.998479 + 0.0551409i \(0.982439\pi\)
\(270\) −0.746512 1.29300i −0.0454313 0.0786893i
\(271\) −28.0779 −1.70561 −0.852807 0.522227i \(-0.825101\pi\)
−0.852807 + 0.522227i \(0.825101\pi\)
\(272\) −0.849678 + 1.47169i −0.0515193 + 0.0892340i
\(273\) 7.85410 13.6037i 0.475352 0.823334i
\(274\) −1.31105 2.27080i −0.0792033 0.137184i
\(275\) 0 0
\(276\) 14.5623 25.2227i 0.876548 1.51823i
\(277\) 19.5927 1.17721 0.588604 0.808421i \(-0.299678\pi\)
0.588604 + 0.808421i \(0.299678\pi\)
\(278\) 0.382559 0.0229443
\(279\) 0 0
\(280\) −3.29180 −0.196722
\(281\) −31.3607 −1.87082 −0.935411 0.353563i \(-0.884970\pi\)
−0.935411 + 0.353563i \(0.884970\pi\)
\(282\) −1.62054 + 2.80687i −0.0965020 + 0.167146i
\(283\) 24.0000 1.42665 0.713326 0.700832i \(-0.247188\pi\)
0.713326 + 0.700832i \(0.247188\pi\)
\(284\) 6.92705 + 11.9980i 0.411045 + 0.711951i
\(285\) 2.55834 4.43117i 0.151543 0.262480i
\(286\) −5.56231 + 9.63420i −0.328906 + 0.569682i
\(287\) −7.47214 −0.441066
\(288\) −4.63525 8.02850i −0.273135 0.473084i
\(289\) 8.35410 + 14.4697i 0.491418 + 0.851161i
\(290\) −1.58114 2.73861i −0.0928477 0.160817i
\(291\) 8.00886 13.8718i 0.469488 0.813176i
\(292\) 3.93314 + 6.81241i 0.230170 + 0.398666i
\(293\) 7.85410 13.6037i 0.458842 0.794737i −0.540058 0.841627i \(-0.681598\pi\)
0.998900 + 0.0468906i \(0.0149312\pi\)
\(294\) −5.24419 −0.305848
\(295\) 13.2918 0.773878
\(296\) 3.12287 5.40897i 0.181513 0.314390i
\(297\) 3.70820 + 6.42280i 0.215172 + 0.372689i
\(298\) −2.56231 + 4.43804i −0.148430 + 0.257089i
\(299\) −23.5623 40.8111i −1.36264 2.36017i
\(300\) 0 0
\(301\) −0.103165 0.178688i −0.00594636 0.0102994i
\(302\) 1.15917 0.0667030
\(303\) 2.55834 4.43117i 0.146973 0.254564i
\(304\) −1.57295 + 2.72443i −0.0902148 + 0.156257i
\(305\) 4.97410 + 8.61540i 0.284816 + 0.493316i
\(306\) 0.461370 0.0263748
\(307\) 8.06231 13.9643i 0.460140 0.796986i −0.538827 0.842416i \(-0.681133\pi\)
0.998968 + 0.0454301i \(0.0144658\pi\)
\(308\) 7.86629 0.448223
\(309\) −6.19704 −0.352537
\(310\) 0 0
\(311\) 16.5279 0.937209 0.468605 0.883408i \(-0.344757\pi\)
0.468605 + 0.883408i \(0.344757\pi\)
\(312\) −23.1246 −1.30917
\(313\) 10.5034 18.1925i 0.593689 1.02830i −0.400041 0.916497i \(-0.631004\pi\)
0.993730 0.111803i \(-0.0356625\pi\)
\(314\) −1.79837 −0.101488
\(315\) −2.50000 4.33013i −0.140859 0.243975i
\(316\) −10.2971 + 17.8351i −0.579257 + 1.00330i
\(317\) −10.8820 + 18.8481i −0.611192 + 1.05862i 0.379848 + 0.925049i \(0.375976\pi\)
−0.991040 + 0.133567i \(0.957357\pi\)
\(318\) 4.58359 0.257035
\(319\) 7.85410 + 13.6037i 0.439745 + 0.761661i
\(320\) −5.26393 9.11740i −0.294263 0.509678i
\(321\) 8.54904 + 14.8074i 0.477161 + 0.826467i
\(322\) 1.31105 2.27080i 0.0730619 0.126547i
\(323\) −0.270091 0.467811i −0.0150283 0.0260297i
\(324\) −9.92705 + 17.1942i −0.551503 + 0.955231i
\(325\) 0 0
\(326\) −4.74265 −0.262671
\(327\) 16.8280 29.1469i 0.930590 1.61183i
\(328\) 5.50000 + 9.52628i 0.303687 + 0.526001i
\(329\) 1.85410 3.21140i 0.102220 0.177050i
\(330\) 4.14590 + 7.18091i 0.228224 + 0.395296i
\(331\) 12.8160 + 22.1980i 0.704433 + 1.22011i 0.966896 + 0.255172i \(0.0821320\pi\)
−0.262463 + 0.964942i \(0.584535\pi\)
\(332\) 2.93159 + 5.07767i 0.160892 + 0.278673i
\(333\) 9.48683 0.519875
\(334\) 1.41421 2.44949i 0.0773823 0.134030i
\(335\) 6.70820 11.6190i 0.366508 0.634811i
\(336\) 3.59929 + 6.23416i 0.196358 + 0.340101i
\(337\) −5.86319 −0.319388 −0.159694 0.987167i \(-0.551051\pi\)
−0.159694 + 0.987167i \(0.551051\pi\)
\(338\) −6.51722 + 11.2882i −0.354490 + 0.613995i
\(339\) −32.5756 −1.76926
\(340\) 2.23954 0.121456
\(341\) 0 0
\(342\) 0.854102 0.0461845
\(343\) 13.0000 0.701934
\(344\) −0.151874 + 0.263053i −0.00818848 + 0.0141829i
\(345\) −35.1246 −1.89105
\(346\) −3.43769 5.95426i −0.184812 0.320103i
\(347\) −12.9192 + 22.3767i −0.693539 + 1.20124i 0.277132 + 0.960832i \(0.410616\pi\)
−0.970671 + 0.240413i \(0.922717\pi\)
\(348\) −7.85410 + 13.6037i −0.421024 + 0.729235i
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 0 0
\(351\) 6.00000 + 10.3923i 0.320256 + 0.554700i
\(352\) −8.79478 15.2330i −0.468763 0.811922i
\(353\) −7.94510 + 13.7613i −0.422875 + 0.732441i −0.996219 0.0868735i \(-0.972312\pi\)
0.573344 + 0.819315i \(0.305646\pi\)
\(354\) 2.59774 + 4.49942i 0.138068 + 0.239142i
\(355\) 8.35410 14.4697i 0.443390 0.767973i
\(356\) 10.8709 0.576159
\(357\) −1.23607 −0.0654197
\(358\) −3.13792 + 5.43504i −0.165844 + 0.287251i
\(359\) −4.88197 8.45581i −0.257660 0.446281i 0.707954 0.706258i \(-0.249618\pi\)
−0.965615 + 0.259977i \(0.916285\pi\)
\(360\) −3.68034 + 6.37454i −0.193971 + 0.335968i
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) −3.47177 6.01329i −0.182472 0.316051i
\(363\) −8.00886 13.8718i −0.420356 0.728078i
\(364\) 12.7279 0.667124
\(365\) 4.74342 8.21584i 0.248282 0.430037i
\(366\) −1.94427 + 3.36758i −0.101629 + 0.176026i
\(367\) 6.15763 + 10.6653i 0.321426 + 0.556726i 0.980782 0.195105i \(-0.0625046\pi\)
−0.659357 + 0.751830i \(0.729171\pi\)
\(368\) 21.5958 1.12576
\(369\) −8.35410 + 14.4697i −0.434897 + 0.753264i
\(370\) −3.62365 −0.188384
\(371\) −5.24419 −0.272265
\(372\) 0 0
\(373\) −22.7082 −1.17579 −0.587893 0.808939i \(-0.700042\pi\)
−0.587893 + 0.808939i \(0.700042\pi\)
\(374\) 0.875388 0.0452652
\(375\) −12.7917 + 22.1558i −0.660560 + 1.14412i
\(376\) −5.45898 −0.281525
\(377\) 12.7082 + 22.0113i 0.654506 + 1.13364i
\(378\) −0.333851 + 0.578246i −0.0171714 + 0.0297418i
\(379\) 9.70820 16.8151i 0.498677 0.863734i −0.501322 0.865261i \(-0.667153\pi\)
0.999999 + 0.00152707i \(0.000486080\pi\)
\(380\) 4.14590 0.212680
\(381\) −10.8541 18.7999i −0.556072 0.963146i
\(382\) −2.71885 4.70918i −0.139108 0.240943i
\(383\) 9.52624 + 16.4999i 0.486768 + 0.843107i 0.999884 0.0152121i \(-0.00484236\pi\)
−0.513116 + 0.858319i \(0.671509\pi\)
\(384\) 11.5444 19.9955i 0.589122 1.02039i
\(385\) −4.74342 8.21584i −0.241747 0.418718i
\(386\) 1.39261 2.41207i 0.0708819 0.122771i
\(387\) −0.461370 −0.0234528
\(388\) 12.9787 0.658894
\(389\) −16.8918 + 29.2574i −0.856446 + 1.48341i 0.0188514 + 0.999822i \(0.493999\pi\)
−0.875297 + 0.483585i \(0.839334\pi\)
\(390\) 6.70820 + 11.6190i 0.339683 + 0.588348i
\(391\) −1.85410 + 3.21140i −0.0937660 + 0.162407i
\(392\) −4.41641 7.64944i −0.223062 0.386355i
\(393\) 22.2148 + 38.4771i 1.12059 + 1.94091i
\(394\) 1.41421 + 2.44949i 0.0712470 + 0.123404i
\(395\) 24.8369 1.24968
\(396\) 8.79478 15.2330i 0.441954 0.765487i
\(397\) −0.645898 + 1.11873i −0.0324167 + 0.0561474i −0.881779 0.471664i \(-0.843654\pi\)
0.849362 + 0.527811i \(0.176987\pi\)
\(398\) 2.81338 + 4.87291i 0.141022 + 0.244257i
\(399\) −2.28825 −0.114556
\(400\) 0 0
\(401\) −3.70246 −0.184892 −0.0924460 0.995718i \(-0.529469\pi\)
−0.0924460 + 0.995718i \(0.529469\pi\)
\(402\) 5.24419 0.261557
\(403\) 0 0
\(404\) 4.14590 0.206266
\(405\) 23.9443 1.18980
\(406\) −0.707107 + 1.22474i −0.0350931 + 0.0607831i
\(407\) 18.0000 0.892227
\(408\) 0.909830 + 1.57587i 0.0450433 + 0.0780173i
\(409\) 8.67656 15.0282i 0.429028 0.743099i −0.567759 0.823195i \(-0.692189\pi\)
0.996787 + 0.0800961i \(0.0255227\pi\)
\(410\) 3.19098 5.52694i 0.157591 0.272956i
\(411\) 15.7082 0.774829
\(412\) −2.51064 4.34856i −0.123691 0.214238i
\(413\) −2.97214 5.14789i −0.146249 0.253311i
\(414\) −2.93159 5.07767i −0.144080 0.249554i
\(415\) 3.53553 6.12372i 0.173553 0.300602i
\(416\) −14.2302 24.6475i −0.697695 1.20844i
\(417\) −1.14590 + 1.98475i −0.0561149 + 0.0971938i
\(418\) 1.62054 0.0792634
\(419\) −18.5967 −0.908511 −0.454255 0.890872i \(-0.650095\pi\)
−0.454255 + 0.890872i \(0.650095\pi\)
\(420\) 4.74342 8.21584i 0.231455 0.400892i
\(421\) 0.208204 + 0.360620i 0.0101472 + 0.0175755i 0.871054 0.491186i \(-0.163437\pi\)
−0.860907 + 0.508762i \(0.830103\pi\)
\(422\) 0.954915 1.65396i 0.0464845 0.0805136i
\(423\) −4.14590 7.18091i −0.201580 0.349148i
\(424\) 3.86008 + 6.68586i 0.187462 + 0.324694i
\(425\) 0 0
\(426\) 6.53089 0.316422
\(427\) 2.22449 3.85292i 0.107650 0.186456i
\(428\) −6.92705 + 11.9980i −0.334832 + 0.579945i
\(429\) −33.3221 57.7156i −1.60881 2.78654i
\(430\) 0.176228 0.00849845
\(431\) 0.0557281 0.0965239i 0.00268433 0.00464939i −0.864680 0.502323i \(-0.832479\pi\)
0.867364 + 0.497674i \(0.165812\pi\)
\(432\) −5.49923 −0.264582
\(433\) 21.5958 1.03783 0.518913 0.854827i \(-0.326337\pi\)
0.518913 + 0.854827i \(0.326337\pi\)
\(434\) 0 0
\(435\) 18.9443 0.908308
\(436\) 27.2705 1.30602
\(437\) −3.43237 + 5.94504i −0.164192 + 0.284390i
\(438\) 3.70820 0.177185
\(439\) 12.5000 + 21.6506i 0.596592 + 1.03333i 0.993320 + 0.115392i \(0.0368124\pi\)
−0.396728 + 0.917936i \(0.629854\pi\)
\(440\) −6.98295 + 12.0948i −0.332899 + 0.576598i
\(441\) 6.70820 11.6190i 0.319438 0.553283i
\(442\) 1.41641 0.0673717
\(443\) −11.9721 20.7363i −0.568813 0.985214i −0.996684 0.0813735i \(-0.974069\pi\)
0.427870 0.903840i \(-0.359264\pi\)
\(444\) 9.00000 + 15.5885i 0.427121 + 0.739795i
\(445\) −6.55524 11.3540i −0.310748 0.538232i
\(446\) 4.16383 7.21196i 0.197163 0.341496i
\(447\) −15.3500 26.5870i −0.726031 1.25752i
\(448\) −2.35410 + 4.07742i −0.111221 + 0.192640i
\(449\) −42.1900 −1.99107 −0.995534 0.0944042i \(-0.969905\pi\)
−0.995534 + 0.0944042i \(0.969905\pi\)
\(450\) 0 0
\(451\) −15.8508 + 27.4544i −0.746385 + 1.29278i
\(452\) −13.1976 22.8588i −0.620761 1.07519i
\(453\) −3.47214 + 6.01392i −0.163135 + 0.282558i
\(454\) −3.00000 5.19615i −0.140797 0.243868i
\(455\) −7.67501 13.2935i −0.359810 0.623209i
\(456\) 1.68430 + 2.91730i 0.0788748 + 0.136615i
\(457\) 11.3137 0.529233 0.264616 0.964354i \(-0.414755\pi\)
0.264616 + 0.964354i \(0.414755\pi\)
\(458\) −0.810272 + 1.40343i −0.0378615 + 0.0655781i
\(459\) 0.472136 0.817763i 0.0220374 0.0381699i
\(460\) −14.2302 24.6475i −0.663489 1.14920i
\(461\) −39.1065 −1.82137 −0.910686 0.413100i \(-0.864446\pi\)
−0.910686 + 0.413100i \(0.864446\pi\)
\(462\) 1.85410 3.21140i 0.0862606 0.149408i
\(463\) 15.1437 0.703787 0.351893 0.936040i \(-0.385538\pi\)
0.351893 + 0.936040i \(0.385538\pi\)
\(464\) −11.6476 −0.540724
\(465\) 0 0
\(466\) −1.72949 −0.0801171
\(467\) 15.6525 0.724310 0.362155 0.932118i \(-0.382041\pi\)
0.362155 + 0.932118i \(0.382041\pi\)
\(468\) 14.2302 24.6475i 0.657794 1.13933i
\(469\) −6.00000 −0.277054
\(470\) 1.58359 + 2.74286i 0.0730457 + 0.126519i
\(471\) 5.38676 9.33015i 0.248209 0.429911i
\(472\) −4.37539 + 7.57839i −0.201394 + 0.348824i
\(473\) −0.875388 −0.0402504
\(474\) 4.85410 + 8.40755i 0.222956 + 0.386172i
\(475\) 0 0
\(476\) −0.500776 0.867369i −0.0229530 0.0397558i
\(477\) −5.86319 + 10.1553i −0.268457 + 0.464981i
\(478\) 3.12287 + 5.40897i 0.142837 + 0.247401i
\(479\) −12.7361 + 22.0595i −0.581926 + 1.00793i 0.413325 + 0.910583i \(0.364367\pi\)
−0.995251 + 0.0973416i \(0.968966\pi\)
\(480\) −21.2132 −0.968246
\(481\) 29.1246 1.32797
\(482\) −2.81338 + 4.87291i −0.128146 + 0.221955i
\(483\) 7.85410 + 13.6037i 0.357374 + 0.618990i
\(484\) 6.48936 11.2399i 0.294971 0.510904i
\(485\) −7.82624 13.5554i −0.355371 0.615521i
\(486\) 3.67811 + 6.37066i 0.166842 + 0.288979i
\(487\) −9.29555 16.1004i −0.421222 0.729577i 0.574838 0.818268i \(-0.305065\pi\)
−0.996059 + 0.0886901i \(0.971732\pi\)
\(488\) −6.54949 −0.296482
\(489\) 14.2059 24.6053i 0.642413 1.11269i
\(490\) −2.56231 + 4.43804i −0.115753 + 0.200490i
\(491\) 4.78282 + 8.28409i 0.215846 + 0.373856i 0.953534 0.301286i \(-0.0974158\pi\)
−0.737688 + 0.675142i \(0.764083\pi\)
\(492\) −31.7016 −1.42922
\(493\) 1.00000 1.73205i 0.0450377 0.0780076i
\(494\) 2.62210 0.117974
\(495\) −21.2132 −0.953463
\(496\) 0 0
\(497\) −7.47214 −0.335171
\(498\) 2.76393 0.123855
\(499\) −9.19239 + 15.9217i −0.411508 + 0.712752i −0.995055 0.0993269i \(-0.968331\pi\)
0.583547 + 0.812079i \(0.301664\pi\)
\(500\) −20.7295 −0.927051
\(501\) 8.47214 + 14.6742i 0.378507 + 0.655594i
\(502\) 4.53709 7.85846i 0.202500 0.350740i
\(503\) −1.44427 + 2.50155i −0.0643969 + 0.111539i −0.896426 0.443193i \(-0.853846\pi\)
0.832029 + 0.554732i \(0.187179\pi\)
\(504\) 3.29180 0.146628
\(505\) −2.50000 4.33013i −0.111249 0.192688i
\(506\) −5.56231 9.63420i −0.247275 0.428292i
\(507\) −39.0427 67.6240i −1.73395 3.00329i
\(508\) 8.79478 15.2330i 0.390205 0.675855i
\(509\) 2.39141 + 4.14205i 0.105997 + 0.183593i 0.914145 0.405387i \(-0.132863\pi\)
−0.808148 + 0.588980i \(0.799530\pi\)
\(510\) 0.527864 0.914287i 0.0233742 0.0404853i
\(511\) −4.24264 −0.187683
\(512\) 22.3050 0.985749
\(513\) 0.874032 1.51387i 0.0385895 0.0668389i
\(514\) −4.57295 7.92058i −0.201704 0.349362i
\(515\) −3.02786 + 5.24441i −0.133424 + 0.231097i
\(516\) −0.437694 0.758108i −0.0192684 0.0333739i
\(517\) −7.86629 13.6248i −0.345959 0.599219i
\(518\) 0.810272 + 1.40343i 0.0356013 + 0.0616633i
\(519\) 41.1884 1.80797
\(520\) −11.2987 + 19.5698i −0.495479 + 0.858195i
\(521\) −6.70820 + 11.6190i −0.293892 + 0.509035i −0.974726 0.223402i \(-0.928284\pi\)
0.680835 + 0.732437i \(0.261617\pi\)
\(522\) 1.58114 + 2.73861i 0.0692046 + 0.119866i
\(523\) 29.0795 1.27156 0.635779 0.771871i \(-0.280679\pi\)
0.635779 + 0.771871i \(0.280679\pi\)
\(524\) −18.0000 + 31.1769i −0.786334 + 1.36197i
\(525\) 0 0
\(526\) 1.03165 0.0449823
\(527\) 0 0
\(528\) 30.5410 1.32913
\(529\) 24.1246 1.04890
\(530\) 2.23954 3.87899i 0.0972793 0.168493i
\(531\) −13.2918 −0.576815
\(532\) −0.927051 1.60570i −0.0401928 0.0696159i
\(533\) −25.6471 + 44.4221i −1.11090 + 1.92414i
\(534\) 2.56231 4.43804i 0.110882 0.192053i
\(535\) 16.7082 0.722359
\(536\) 4.41641 + 7.64944i 0.190760 + 0.330406i
\(537\) −18.7984 32.5597i −0.811210 1.40506i
\(538\) −2.82843 4.89898i −0.121942 0.211210i
\(539\) 12.7279 22.0454i 0.548230 0.949563i
\(540\) 3.62365 + 6.27634i 0.155937 + 0.270091i
\(541\) 13.9164 24.1039i 0.598313 1.03631i −0.394757 0.918786i \(-0.629171\pi\)
0.993070 0.117523i \(-0.0374954\pi\)
\(542\) −10.7248 −0.460670
\(543\) 41.5967 1.78509
\(544\) −1.11977 + 1.93950i −0.0480097 + 0.0831552i
\(545\) −16.4443 28.4823i −0.704395 1.22005i
\(546\) 3.00000 5.19615i 0.128388 0.222375i
\(547\) 12.2082 + 21.1452i 0.521985 + 0.904105i 0.999673 + 0.0255751i \(0.00814168\pi\)
−0.477688 + 0.878530i \(0.658525\pi\)
\(548\) 6.36396 + 11.0227i 0.271855 + 0.470867i
\(549\) −4.97410 8.61540i −0.212289 0.367696i
\(550\) 0 0
\(551\) 1.85123 3.20642i 0.0788650 0.136598i
\(552\) 11.5623 20.0265i 0.492124 0.852384i
\(553\) −5.55369 9.61927i −0.236167 0.409053i
\(554\) 7.48373 0.317953
\(555\) 10.8541 18.7999i 0.460731 0.798009i
\(556\) −1.85698 −0.0787534
\(557\) −23.2951 −0.987046 −0.493523 0.869733i \(-0.664291\pi\)
−0.493523 + 0.869733i \(0.664291\pi\)
\(558\) 0 0
\(559\) −1.41641 −0.0599077
\(560\) 7.03444 0.297259
\(561\) −2.62210 + 4.54160i −0.110705 + 0.191747i
\(562\) −11.9787 −0.505292
\(563\) −7.11803 12.3288i −0.299989 0.519597i 0.676144 0.736770i \(-0.263650\pi\)
−0.976133 + 0.217173i \(0.930316\pi\)
\(564\) 7.86629 13.6248i 0.331230 0.573708i
\(565\) −15.9164 + 27.5680i −0.669608 + 1.15980i
\(566\) 9.16718 0.385325
\(567\) −5.35410 9.27358i −0.224851 0.389454i
\(568\) 5.50000 + 9.52628i 0.230775 + 0.399714i
\(569\) 15.3500 + 26.5870i 0.643506 + 1.11459i 0.984644 + 0.174572i \(0.0558543\pi\)
−0.341138 + 0.940013i \(0.610812\pi\)
\(570\) 0.977198 1.69256i 0.0409303 0.0708934i
\(571\) −3.43237 5.94504i −0.143640 0.248792i 0.785225 0.619211i \(-0.212547\pi\)
−0.928865 + 0.370419i \(0.879214\pi\)
\(572\) 27.0000 46.7654i 1.12893 1.95536i
\(573\) 32.5756 1.36087
\(574\) −2.85410 −0.119128
\(575\) 0 0
\(576\) 5.26393 + 9.11740i 0.219331 + 0.379892i
\(577\) 15.0000 25.9808i 0.624458 1.08159i −0.364187 0.931326i \(-0.618653\pi\)
0.988645 0.150268i \(-0.0480135\pi\)
\(578\) 3.19098 + 5.52694i 0.132727 + 0.229891i
\(579\) 8.34271 + 14.4500i 0.346711 + 0.600521i
\(580\) 7.67501 + 13.2935i 0.318687 + 0.551983i
\(581\) −3.16228 −0.131193
\(582\) 3.05911 5.29854i 0.126804 0.219631i
\(583\) −11.1246 + 19.2684i −0.460734 + 0.798015i
\(584\) 3.12287 + 5.40897i 0.129225 + 0.223825i
\(585\) −34.3237 −1.41911
\(586\) 3.00000 5.19615i 0.123929 0.214651i
\(587\) 41.1884 1.70003 0.850014 0.526760i \(-0.176593\pi\)
0.850014 + 0.526760i \(0.176593\pi\)
\(588\) 25.4558 1.04978
\(589\) 0 0
\(590\) 5.07701 0.209017
\(591\) −16.9443 −0.696994
\(592\) −6.67346 + 11.5588i −0.274277 + 0.475062i
\(593\) −17.1803 −0.705512 −0.352756 0.935715i \(-0.614755\pi\)
−0.352756 + 0.935715i \(0.614755\pi\)
\(594\) 1.41641 + 2.45329i 0.0581159 + 0.100660i
\(595\) −0.603941 + 1.04606i −0.0247592 + 0.0428842i
\(596\) 12.4377 21.5427i 0.509468 0.882424i
\(597\) −33.7082 −1.37958
\(598\) −9.00000 15.5885i −0.368037 0.637459i
\(599\) −11.9721 20.7363i −0.489168 0.847264i 0.510754 0.859727i \(-0.329366\pi\)
−0.999922 + 0.0124626i \(0.996033\pi\)
\(600\) 0 0
\(601\) −4.34581 + 7.52716i −0.177269 + 0.307039i −0.940944 0.338562i \(-0.890060\pi\)
0.763675 + 0.645601i \(0.223393\pi\)
\(602\) −0.0394057 0.0682527i −0.00160606 0.00278177i
\(603\) −6.70820 + 11.6190i −0.273179 + 0.473160i
\(604\) −5.62675 −0.228949
\(605\) −15.6525 −0.636364
\(606\) 0.977198 1.69256i 0.0396959 0.0687554i
\(607\) 12.5623 + 21.7586i 0.509888 + 0.883152i 0.999934 + 0.0114559i \(0.00364660\pi\)
−0.490046 + 0.871697i \(0.663020\pi\)
\(608\) −2.07295 + 3.59045i −0.0840692 + 0.145612i
\(609\) −4.23607 7.33708i −0.171654 0.297314i
\(610\) 1.89994 + 3.29079i 0.0769262 + 0.133240i
\(611\) −12.7279 22.0454i −0.514917 0.891862i
\(612\) −2.23954 −0.0905279
\(613\) 18.6792 32.3534i 0.754447 1.30674i −0.191202 0.981551i \(-0.561239\pi\)
0.945649 0.325189i \(-0.105428\pi\)
\(614\) 3.07953 5.33390i 0.124280 0.215259i
\(615\) 19.1162 + 33.1103i 0.770841 + 1.33514i
\(616\) 6.24574 0.251648
\(617\) 23.5623 40.8111i 0.948583 1.64299i 0.200169 0.979761i \(-0.435851\pi\)
0.748414 0.663232i \(-0.230816\pi\)
\(618\) −2.36706 −0.0952170
\(619\) −21.5958 −0.868007 −0.434003 0.900911i \(-0.642899\pi\)
−0.434003 + 0.900911i \(0.642899\pi\)
\(620\) 0 0
\(621\) −12.0000 −0.481543
\(622\) 6.31308 0.253132
\(623\) −2.93159 + 5.07767i −0.117452 + 0.203432i
\(624\) 49.4164 1.97824
\(625\) 12.5000 + 21.6506i 0.500000 + 0.866025i
\(626\) 4.01196 6.94891i 0.160350 0.277734i
\(627\) −4.85410 + 8.40755i −0.193854 + 0.335765i
\(628\) 8.72949 0.348345
\(629\) −1.14590 1.98475i −0.0456899 0.0791373i
\(630\) −0.954915 1.65396i −0.0380447 0.0658954i
\(631\) 2.32765 + 4.03161i 0.0926623 + 0.160496i 0.908631 0.417601i \(-0.137129\pi\)
−0.815968 + 0.578097i \(0.803796\pi\)
\(632\) −8.17578 + 14.1609i −0.325215 + 0.563289i
\(633\) 5.72061 + 9.90839i 0.227374 + 0.393823i
\(634\) −4.15654 + 7.19934i −0.165077 + 0.285922i
\(635\) −21.2132 −0.841820
\(636\) −22.2492 −0.882239
\(637\) 20.5942 35.6702i 0.815972 1.41331i
\(638\) 3.00000 + 5.19615i 0.118771 + 0.205718i
\(639\) −8.35410 + 14.4697i −0.330483 + 0.572414i
\(640\) −11.2812 19.5395i −0.445927 0.772368i
\(641\) 4.24264 + 7.34847i 0.167574 + 0.290247i 0.937566 0.347806i \(-0.113073\pi\)
−0.769992 + 0.638053i \(0.779740\pi\)
\(642\) 3.26544 + 5.65591i 0.128877 + 0.223221i
\(643\) −23.6290 −0.931836 −0.465918 0.884828i \(-0.654276\pi\)
−0.465918 + 0.884828i \(0.654276\pi\)
\(644\) −6.36396 + 11.0227i −0.250775 + 0.434355i
\(645\) −0.527864 + 0.914287i −0.0207846 + 0.0360000i
\(646\) −0.103165 0.178688i −0.00405899 0.00703038i
\(647\) 19.1313 0.752129 0.376064 0.926594i \(-0.377277\pi\)
0.376064 + 0.926594i \(0.377277\pi\)
\(648\) −7.88197 + 13.6520i −0.309633 + 0.536300i
\(649\) −25.2194 −0.989948
\(650\) 0 0
\(651\) 0 0
\(652\) 23.0213 0.901583
\(653\) −6.65248 −0.260331 −0.130166 0.991492i \(-0.541551\pi\)
−0.130166 + 0.991492i \(0.541551\pi\)
\(654\) 6.42772 11.1331i 0.251344 0.435340i
\(655\) 43.4164 1.69642
\(656\) −11.7533 20.3573i −0.458889 0.794819i
\(657\) −4.74342 + 8.21584i −0.185058 + 0.320530i
\(658\) 0.708204 1.22665i 0.0276087 0.0478196i
\(659\) 47.1803 1.83789 0.918943 0.394391i \(-0.129045\pi\)
0.918943 + 0.394391i \(0.129045\pi\)
\(660\) −20.1246 34.8569i −0.783349 1.35680i
\(661\) 22.9164 + 39.6924i 0.891345 + 1.54385i 0.838264 + 0.545265i \(0.183571\pi\)
0.0530809 + 0.998590i \(0.483096\pi\)
\(662\) 4.89529 + 8.47889i 0.190261 + 0.329541i
\(663\) −4.24264 + 7.34847i −0.164771 + 0.285391i
\(664\) 2.32765 + 4.03161i 0.0903304 + 0.156457i
\(665\) −1.11803 + 1.93649i −0.0433555 + 0.0750939i
\(666\) 3.62365 0.140413
\(667\) −25.4164 −0.984127
\(668\) −6.86474 + 11.8901i −0.265605 + 0.460041i
\(669\) 24.9443 + 43.2047i 0.964401 + 1.67039i
\(670\) 2.56231 4.43804i 0.0989905 0.171457i
\(671\) −9.43769 16.3466i −0.364338 0.631052i
\(672\) 4.74342 + 8.21584i 0.182981 + 0.316933i
\(673\) 3.72681 + 6.45503i 0.143658 + 0.248823i 0.928871 0.370402i \(-0.120780\pi\)
−0.785213 + 0.619225i \(0.787447\pi\)
\(674\) −2.23954 −0.0862638
\(675\) 0 0
\(676\) 31.6353 54.7939i 1.21674 2.10746i
\(677\) 10.6066 + 18.3712i 0.407645 + 0.706062i 0.994625 0.103540i \(-0.0330168\pi\)
−0.586981 + 0.809601i \(0.699683\pi\)
\(678\) −12.4428 −0.477862
\(679\) −3.50000 + 6.06218i −0.134318 + 0.232645i
\(680\) 1.77817 0.0681896
\(681\) 35.9442 1.37739
\(682\) 0 0
\(683\) −18.8197 −0.720114 −0.360057 0.932930i \(-0.617243\pi\)
−0.360057 + 0.932930i \(0.617243\pi\)
\(684\) −4.14590 −0.158522
\(685\) 7.67501 13.2935i 0.293247 0.507919i
\(686\) 4.96556 0.189586
\(687\) −4.85410 8.40755i −0.185196 0.320768i
\(688\) 0.324548 0.562134i 0.0123733 0.0214312i
\(689\) −18.0000 + 31.1769i −0.685745 + 1.18775i
\(690\) −13.4164 −0.510754
\(691\) 10.7918 + 18.6919i 0.410539 + 0.711075i 0.994949 0.100384i \(-0.0320071\pi\)
−0.584409 + 0.811459i \(0.698674\pi\)
\(692\) 16.6869 + 28.9026i 0.634341 + 1.09871i
\(693\) 4.74342 + 8.21584i 0.180187 + 0.312094i
\(694\) −4.93470 + 8.54714i −0.187318 + 0.324445i
\(695\) 1.11977 + 1.93950i 0.0424752 + 0.0735693i
\(696\) −6.23607 + 10.8012i −0.236378 + 0.409418i
\(697\) 4.03631 0.152886
\(698\) 2.29180 0.0867458
\(699\) 5.18043 8.97277i 0.195942 0.339381i
\(700\) 0 0
\(701\) −13.8262 + 23.9477i −0.522210 + 0.904494i 0.477456 + 0.878655i \(0.341559\pi\)
−0.999666 + 0.0258384i \(0.991774\pi\)
\(702\) 2.29180 + 3.96951i 0.0864983 + 0.149819i
\(703\) −2.12132 3.67423i −0.0800071 0.138576i
\(704\) 9.98761 + 17.2990i 0.376422 + 0.651982i
\(705\) −18.9737 −0.714590
\(706\) −3.03476 + 5.25636i −0.114215 + 0.197826i
\(707\) −1.11803 + 1.93649i −0.0420480 + 0.0728293i
\(708\) −12.6097 21.8406i −0.473902 0.820822i
\(709\) 15.7326 0.590849 0.295425 0.955366i \(-0.404539\pi\)
0.295425 + 0.955366i \(0.404539\pi\)
\(710\) 3.19098 5.52694i 0.119755 0.207423i
\(711\) −24.8369 −0.931455
\(712\) 8.63141 0.323476
\(713\) 0 0
\(714\) −0.472136 −0.0176692
\(715\) −65.1246 −2.43552
\(716\) 15.2318 26.3823i 0.569239 0.985951i
\(717\) −37.4164 −1.39734
\(718\) −1.86475 3.22983i −0.0695917 0.120536i
\(719\) 4.55214 7.88453i 0.169766 0.294043i −0.768571 0.639764i \(-0.779032\pi\)
0.938338 + 0.345720i \(0.112365\pi\)
\(720\) 7.86475 13.6221i 0.293102 0.507667i
\(721\) 2.70820 0.100859
\(722\) 3.43769 + 5.95426i 0.127938 + 0.221595i
\(723\) −16.8541 29.1922i −0.626811 1.08567i
\(724\) 16.8523 + 29.1891i 0.626312 + 1.08481i
\(725\) 0 0
\(726\) −3.05911 5.29854i −0.113534 0.196647i
\(727\) 1.79180 3.10348i 0.0664540 0.115102i −0.830884 0.556446i \(-0.812165\pi\)
0.897338 + 0.441344i \(0.145498\pi\)
\(728\) 10.1058 0.374547
\(729\) −11.9443 −0.442380
\(730\) 1.81182 3.13817i 0.0670586 0.116149i
\(731\) 0.0557281 + 0.0965239i 0.00206118 + 0.00357006i
\(732\) 9.43769 16.3466i 0.348827 0.604186i
\(733\) −6.20820 10.7529i −0.229305 0.397168i 0.728297 0.685261i \(-0.240312\pi\)
−0.957602 + 0.288093i \(0.906979\pi\)
\(734\) 2.35201 + 4.07379i 0.0868141 + 0.150366i
\(735\) −15.3500 26.5870i −0.566194 0.980677i
\(736\) 28.4605 1.04907
\(737\) −12.7279 + 22.0454i −0.468839 + 0.812053i
\(738\) −3.19098 + 5.52694i −0.117462 + 0.203450i
\(739\) 12.8311 + 22.2241i 0.471999 + 0.817527i 0.999487 0.0320362i \(-0.0101992\pi\)
−0.527488 + 0.849563i \(0.676866\pi\)
\(740\) 17.5896 0.646605
\(741\) −7.85410 + 13.6037i −0.288528 + 0.499745i
\(742\) −2.00310 −0.0735362
\(743\) −1.69936 −0.0623433 −0.0311717 0.999514i \(-0.509924\pi\)
−0.0311717 + 0.999514i \(0.509924\pi\)
\(744\) 0 0
\(745\) −30.0000 −1.09911
\(746\) −8.67376 −0.317569
\(747\) −3.53553 + 6.12372i −0.129358 + 0.224055i
\(748\) −4.24922 −0.155367
\(749\) −3.73607 6.47106i −0.136513 0.236447i
\(750\) −4.88599 + 8.46278i −0.178411 + 0.309017i
\(751\) −14.7705 + 25.5833i −0.538984 + 0.933547i 0.459976 + 0.887932i \(0.347858\pi\)
−0.998959 + 0.0456153i \(0.985475\pi\)
\(752\) 11.6656 0.425402
\(753\) 27.1803 + 47.0777i 0.990507 + 1.71561i
\(754\) 4.85410 + 8.40755i 0.176776 + 0.306185i
\(755\) 3.39296 + 5.87678i 0.123483 + 0.213878i
\(756\) 1.62054 2.80687i 0.0589386 0.102085i
\(757\) 9.59000 + 16.6104i 0.348554 + 0.603714i 0.985993 0.166787i \(-0.0533393\pi\)
−0.637438 + 0.770501i \(0.720006\pi\)
\(758\) 3.70820 6.42280i 0.134688 0.233287i
\(759\) 66.6443 2.41903
\(760\) 3.29180 0.119406
\(761\) −1.11977 + 1.93950i −0.0405916 + 0.0703067i −0.885607 0.464435i \(-0.846258\pi\)
0.845016 + 0.534741i \(0.179591\pi\)
\(762\) −4.14590 7.18091i −0.150190 0.260137i
\(763\) −7.35410 + 12.7377i −0.266236 + 0.461135i
\(764\) 13.1976 + 22.8588i 0.477471 + 0.827004i
\(765\) 1.35045 + 2.33905i 0.0488258 + 0.0845687i
\(766\) 3.63870 + 6.30241i 0.131472 + 0.227715i
\(767\) −40.8059 −1.47341
\(768\) −6.36396 + 11.0227i −0.229640 + 0.397748i
\(769\) −6.93769 + 12.0164i −0.250180 + 0.433324i −0.963575 0.267438i \(-0.913823\pi\)
0.713395 + 0.700762i \(0.247156\pi\)
\(770\) −1.81182 3.13817i −0.0652936 0.113092i
\(771\) 54.7904 1.97323
\(772\) −6.75987 + 11.7084i −0.243293 + 0.421396i
\(773\) −26.9976 −0.971035 −0.485518 0.874227i \(-0.661369\pi\)
−0.485518 + 0.874227i \(0.661369\pi\)
\(774\) −0.176228 −0.00633437
\(775\) 0 0
\(776\) 10.3050 0.369926
\(777\) −9.70820 −0.348280
\(778\) −6.45207 + 11.1753i −0.231318 + 0.400655i
\(779\) 7.47214 0.267717
\(780\) −32.5623 56.3996i −1.16592 2.01943i
\(781\) −15.8508 + 27.4544i −0.567186 + 0.982395i
\(782\) −0.708204 + 1.22665i −0.0253253 + 0.0438647i
\(783\) 6.47214 0.231295
\(784\) 9.43769 + 16.3466i 0.337061 + 0.583806i
\(785\) −5.26393 9.11740i −0.187878 0.325414i
\(786\) 8.48528 + 14.6969i 0.302660 + 0.524222i
\(787\) 4.55214 7.88453i 0.162266 0.281053i −0.773415 0.633900i \(-0.781453\pi\)
0.935681 + 0.352847i \(0.114786\pi\)
\(788\) −6.86474 11.8901i −0.244546 0.423566i
\(789\) −3.09017 + 5.35233i −0.110013 + 0.190548i
\(790\) 9.48683 0.337526
\(791\) 14.2361 0.506176
\(792\) 6.98295 12.0948i 0.248128 0.429771i
\(793\) −15.2705 26.4493i −0.542272 0.939242i
\(794\) −0.246711 + 0.427316i −0.00875545 + 0.0151649i
\(795\) 13.4164 + 23.2379i 0.475831 + 0.824163i
\(796\) −13.6564 23.6536i −0.484039 0.838380i
\(797\) −2.62210 4.54160i −0.0928794 0.160872i 0.815842 0.578275i \(-0.196274\pi\)
−0.908722 + 0.417403i \(0.862940\pi\)
\(798\) −0.874032 −0.0309404
\(799\) −1.00155 + 1.73474i −0.0354323 + 0.0613706i
\(800\) 0 0
\(801\) 6.55524 + 11.3540i 0.231618 + 0.401174i
\(802\) −1.41421 −0.0499376
\(803\) −9.00000 + 15.5885i −0.317603 + 0.550105i
\(804\) −25.4558 −0.897758
\(805\) 15.3500 0.541017
\(806\) 0 0
\(807\) 33.8885 1.19293
\(808\) 3.29180 0.115805
\(809\) 11.0286 19.1020i 0.387744 0.671592i −0.604402 0.796680i \(-0.706588\pi\)
0.992146 + 0.125088i \(0.0399212\pi\)
\(810\) 9.14590 0.321354
\(811\) 21.7082 + 37.5997i 0.762278 + 1.32030i 0.941674 + 0.336527i \(0.109252\pi\)
−0.179396 + 0.983777i \(0.557414\pi\)
\(812\) 3.43237 5.94504i 0.120453 0.208630i
\(813\) 32.1246 55.6415i 1.12666 1.95143i
\(814\) 6.87539 0.240982
\(815\) −13.8820 24.0443i −0.486264 0.842234i
\(816\) −1.94427 3.36758i −0.0680631 0.117889i
\(817\) 0.103165 + 0.178688i 0.00360930 + 0.00625150i
\(818\) 3.31415 5.74028i 0.115877 0.200704i
\(819\) 7.67501 + 13.2935i 0.268187 + 0.464513i
\(820\) −15.4894 + 26.8284i −0.540912 + 0.936887i
\(821\) 14.3485 0.500765 0.250382 0.968147i \(-0.419444\pi\)
0.250382 + 0.968147i \(0.419444\pi\)
\(822\) 6.00000 0.209274
\(823\) −7.46868 + 12.9361i −0.260342 + 0.450925i −0.966333 0.257296i \(-0.917169\pi\)
0.705991 + 0.708221i \(0.250502\pi\)
\(824\) −1.99342 3.45271i −0.0694442 0.120281i
\(825\) 0 0
\(826\) −1.13525 1.96632i −0.0395006 0.0684170i
\(827\) −24.0266 41.6153i −0.835486 1.44710i −0.893634 0.448796i \(-0.851853\pi\)
0.0581481 0.998308i \(-0.481480\pi\)
\(828\) 14.2302 + 24.6475i 0.494535 + 0.856560i
\(829\) −5.83308 −0.202591 −0.101296 0.994856i \(-0.532299\pi\)
−0.101296 + 0.994856i \(0.532299\pi\)
\(830\) 1.35045 2.33905i 0.0468749 0.0811898i
\(831\) −22.4164 + 38.8264i −0.777617 + 1.34687i
\(832\) 16.1603 + 27.9904i 0.560257 + 0.970394i
\(833\) −3.24109 −0.112297
\(834\) −0.437694 + 0.758108i −0.0151561 + 0.0262511i
\(835\) 16.5579 0.573010
\(836\) −7.86629 −0.272061
\(837\) 0 0
\(838\) −7.10333 −0.245380
\(839\) 7.41641 0.256043 0.128021 0.991771i \(-0.459137\pi\)
0.128021 + 0.991771i \(0.459137\pi\)
\(840\) 3.76622 6.52328i 0.129947 0.225075i
\(841\) −15.2918 −0.527303
\(842\) 0.0795268 + 0.137745i 0.00274068 + 0.00474699i
\(843\) 35.8805 62.1468i 1.23579 2.14045i
\(844\) −4.63525 + 8.02850i −0.159552 + 0.276352i
\(845\) −76.3050 −2.62497
\(846\) −1.58359 2.74286i −0.0544450 0.0943015i
\(847\) 3.50000 + 6.06218i 0.120261 + 0.208299i
\(848\) −8.24885 14.2874i −0.283267 0.490632i
\(849\) −27.4589 + 47.5603i −0.942389 + 1.63226i
\(850\) 0 0
\(851\) −14.5623 + 25.2227i −0.499189 + 0.864621i
\(852\) −31.7016 −1.08608
\(853\) −45.7082 −1.56502 −0.782510 0.622639i \(-0.786061\pi\)
−0.782510 + 0.622639i \(0.786061\pi\)
\(854\) 0.849678 1.47169i 0.0290754 0.0503600i
\(855\) 2.50000 + 4.33013i 0.0854982 + 0.148087i
\(856\) −5.50000 + 9.52628i −0.187986 + 0.325602i
\(857\) 3.00000 + 5.19615i 0.102478 + 0.177497i 0.912705 0.408619i \(-0.133990\pi\)
−0.810227 + 0.586116i \(0.800656\pi\)
\(858\) −12.7279 22.0454i −0.434524 0.752618i
\(859\) 1.82688 + 3.16424i 0.0623322 + 0.107963i 0.895507 0.445046i \(-0.146813\pi\)
−0.833175 + 0.553009i \(0.813480\pi\)
\(860\) −0.855427 −0.0291698
\(861\) 8.54904 14.8074i 0.291351 0.504634i
\(862\) 0.0212862 0.0368688i 0.000725012 0.00125576i
\(863\) −17.6626 30.5926i −0.601243 1.04138i −0.992633 0.121158i \(-0.961339\pi\)
0.391391 0.920225i \(-0.371994\pi\)
\(864\) −7.24730 −0.246558
\(865\) 20.1246 34.8569i 0.684257 1.18517i
\(866\) 8.24885 0.280307
\(867\) −38.2325 −1.29844
\(868\) 0 0
\(869\) −47.1246 −1.59859
\(870\) 7.23607 0.245326
\(871\) −20.5942 + 35.6702i −0.697808 + 1.20864i
\(872\) 21.6525 0.733245
\(873\) 7.82624 + 13.5554i 0.264878 + 0.458782i
\(874\) −1.31105 + 2.27080i −0.0443469 + 0.0768110i
\(875\) 5.59017 9.68246i 0.188982 0.327327i
\(876\) −18.0000 −0.608164
\(877\) 7.64590 + 13.2431i 0.258184 + 0.447187i 0.965755 0.259454i \(-0.0835427\pi\)
−0.707572 + 0.706642i \(0.750209\pi\)
\(878\) 4.77458 + 8.26981i 0.161134 + 0.279092i
\(879\) 17.9721 + 31.1286i 0.606184 + 1.04994i
\(880\) 14.9223 25.8462i 0.503031 0.871275i
\(881\) 24.8369 + 43.0187i 0.836775 + 1.44934i 0.892577 + 0.450895i \(0.148895\pi\)
−0.0558024 + 0.998442i \(0.517772\pi\)
\(882\) 2.56231 4.43804i 0.0862773 0.149437i
\(883\) −33.9411 −1.14221 −0.571105 0.820877i \(-0.693485\pi\)
−0.571105 + 0.820877i \(0.693485\pi\)
\(884\) −6.87539 −0.231244
\(885\) −15.2074 + 26.3401i −0.511193 + 0.885412i
\(886\) −4.57295 7.92058i −0.153631 0.266097i
\(887\) 9.68034 16.7668i 0.325034 0.562975i −0.656485 0.754339i \(-0.727958\pi\)
0.981519 + 0.191363i \(0.0612909\pi\)
\(888\) 7.14590 + 12.3771i 0.239801 + 0.415347i
\(889\) 4.74342 + 8.21584i 0.159089 + 0.275550i
\(890\) −2.50388 4.33685i −0.0839302 0.145371i
\(891\) −45.4311 −1.52200
\(892\) −20.2117 + 35.0076i −0.676736 + 1.17214i
\(893\) −1.85410 + 3.21140i −0.0620452 + 0.107465i
\(894\) −5.86319 10.1553i −0.196094 0.339645i
\(895\) −36.7394 −1.22806
\(896\) −5.04508 + 8.73834i −0.168544 + 0.291928i
\(897\) 107.833 3.60043
\(898\) −16.1151 −0.537769
\(899\) 0 0
\(900\) 0 0
\(901\) 2.83282 0.0943748
\(902\) −6.05446 + 10.4866i −0.201592 + 0.349167i
\(903\) 0.472136 0.0157117
\(904\) −10.4787 18.1497i −0.348517 0.603649i
\(905\) 20.3241 35.2024i 0.675597 1.17017i
\(906\) −1.32624 + 2.29711i −0.0440613 + 0.0763164i
\(907\) −55.5410 −1.84421 −0.922105 0.386941i \(-0.873532\pi\)
−0.922105 + 0.386941i \(0.873532\pi\)
\(908\) 14.5623 + 25.2227i 0.483267 + 0.837043i
\(909\) 2.50000 + 4.33013i 0.0829198 + 0.143621i
\(910\) −2.93159 5.07767i −0.0971813 0.168323i
\(911\) −7.09542 + 12.2896i −0.235082 + 0.407174i −0.959296 0.282401i \(-0.908869\pi\)
0.724215 + 0.689575i \(0.242202\pi\)
\(912\) −3.59929 6.23416i −0.119185 0.206434i
\(913\) −6.70820 + 11.6190i −0.222009 + 0.384531i
\(914\) 4.32145 0.142941
\(915\) −22.7639 −0.752552
\(916\) 3.93314 6.81241i 0.129955 0.225088i
\(917\) −9.70820 16.8151i −0.320593 0.555284i
\(918\) 0.180340 0.312358i 0.00595210 0.0103093i
\(919\) −12.2705 21.2531i −0.404767 0.701077i 0.589528 0.807748i \(-0.299314\pi\)
−0.994294 + 0.106672i \(0.965981\pi\)
\(920\) −11.2987 19.5698i −0.372506 0.645199i
\(921\) 18.4485 + 31.9538i 0.607900 + 1.05291i
\(922\) −14.9374 −0.491936
\(923\) −25.6471 + 44.4221i −0.844185 + 1.46217i
\(924\) −9.00000 + 15.5885i −0.296078 + 0.512823i
\(925\) 0 0
\(926\) 5.78437 0.190086
\(927\) 3.02786 5.24441i 0.0994481 0.172249i
\(928\) −15.3500 −0.503889
\(929\) 23.2951 0.764288 0.382144 0.924103i \(-0.375186\pi\)
0.382144 + 0.924103i \(0.375186\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) 8.39512 0.274991
\(933\) −18.9099 + 32.7529i −0.619083 + 1.07228i
\(934\) 5.97871 0.195629
\(935\) 2.56231 + 4.43804i 0.0837964 + 0.145140i
\(936\) 11.2987 19.5698i 0.369308 0.639660i
\(937\) 28.1246 48.7133i 0.918791 1.59139i 0.117537 0.993069i \(-0.462500\pi\)
0.801254 0.598324i \(-0.204167\pi\)
\(938\) −2.29180 −0.0748298
\(939\) 24.0344 + 41.6289i 0.784334 + 1.35851i
\(940\) −7.68692 13.3141i −0.250720 0.434259i
\(941\) −25.4164 44.0226i −0.828552 1.43509i −0.899174 0.437591i \(-0.855832\pi\)
0.0706217 0.997503i \(-0.477502\pi\)
\(942\) 2.05756 3.56380i 0.0670389 0.116115i
\(943\) −25.6471 44.4221i −0.835185 1.44658i
\(944\) 9.35004 16.1947i 0.304318 0.527094i
\(945\) −3.90879 −0.127153
\(946\) −0.334369 −0.0108713
\(947\) −1.11977 + 1.93950i −0.0363876 + 0.0630252i −0.883646 0.468156i \(-0.844918\pi\)
0.847258 + 0.531181i \(0.178252\pi\)
\(948\) −23.5623 40.8111i −0.765268 1.32548i
\(949\) −14.5623 + 25.2227i −0.472712 + 0.818762i
\(950\) 0 0
\(951\) −24.9006 43.1291i −0.807458 1.39856i
\(952\) −0.397610 0.688681i −0.0128866 0.0223203i
\(953\) 53.4550 1.73158 0.865788 0.500411i \(-0.166818\pi\)
0.865788 + 0.500411i \(0.166818\pi\)
\(954\) −2.23954 + 3.87899i −0.0725077 + 0.125587i
\(955\) 15.9164 27.5680i 0.515043 0.892080i
\(956\) −15.1587 26.2557i −0.490269 0.849170i
\(957\) −35.9442 −1.16191
\(958\) −4.86475 + 8.42599i −0.157173 + 0.272231i
\(959\) −6.86474 −0.221674
\(960\) 24.0903 0.777512
\(961\) 0 0
\(962\) 11.1246 0.358672
\(963\) −16.7082 −0.538414
\(964\) 13.6564 23.6536i 0.439843 0.761831i
\(965\) 16.3050 0.524875
\(966\) 3.00000 + 5.19615i 0.0965234 + 0.167183i
\(967\) 6.45207 11.1753i 0.207485 0.359374i −0.743437 0.668806i \(-0.766806\pi\)
0.950922 + 0.309432i \(0.100139\pi\)
\(968\) 5.15248 8.92435i 0.165607 0.286839i
\(969\) 1.23607 0.0397082
\(970\) −2.98936 5.17772i −0.0959825 0.166247i
\(971\) −9.05573 15.6850i −0.290612 0.503355i 0.683342 0.730098i \(-0.260526\pi\)
−0.973955 + 0.226743i \(0.927192\pi\)
\(972\) −17.8539 30.9239i −0.572664 0.991883i
\(973\) 0.500776 0.867369i 0.0160541 0.0278066i
\(974\) −3.55059 6.14979i −0.113768 0.197052i
\(975\) 0 0
\(976\) 13.9960 0.448001
\(977\) 42.4853 1.35922 0.679612 0.733571i \(-0.262148\pi\)
0.679612 + 0.733571i \(0.262148\pi\)
\(978\) 5.42617 9.39840i 0.173510 0.300528i
\(979\) 12.4377 + 21.5427i 0.397510 + 0.688508i
\(980\) 12.4377 21.5427i 0.397308 0.688157i
\(981\) 16.4443 + 28.4823i 0.525025 + 0.909370i
\(982\) 1.82688 + 3.16424i 0.0582979 + 0.100975i
\(983\) 1.50233 + 2.60211i 0.0479168 + 0.0829943i 0.888989 0.457928i \(-0.151408\pi\)
−0.841072 + 0.540923i \(0.818075\pi\)
\(984\) −25.1707 −0.802413
\(985\) −8.27895 + 14.3396i −0.263789 + 0.456896i
\(986\) 0.381966 0.661585i 0.0121643 0.0210691i
\(987\) 4.24264 + 7.34847i 0.135045 + 0.233904i
\(988\) −12.7279 −0.404929
\(989\) 0.708204 1.22665i 0.0225196 0.0390050i
\(990\) −8.10272 −0.257521
\(991\) −4.44897 −0.141326 −0.0706631 0.997500i \(-0.522512\pi\)
−0.0706631 + 0.997500i \(0.522512\pi\)
\(992\) 0 0
\(993\) −58.6525 −1.86128
\(994\) −2.85410 −0.0905266
\(995\) −16.4698 + 28.5265i −0.522127 + 0.904351i
\(996\) −13.4164 −0.425115
\(997\) −24.3328 42.1457i −0.770628 1.33477i −0.937219 0.348741i \(-0.886609\pi\)
0.166591 0.986026i \(-0.446724\pi\)
\(998\) −3.51118 + 6.08154i −0.111144 + 0.192508i
\(999\) 3.70820 6.42280i 0.117322 0.203208i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.c.h.439.1 8
31.2 even 5 961.2.g.i.547.2 16
31.3 odd 30 961.2.g.i.448.1 16
31.4 even 5 961.2.g.p.235.2 16
31.5 even 3 961.2.a.h.1.2 yes 4
31.6 odd 6 inner 961.2.c.h.521.2 8
31.7 even 15 961.2.g.p.338.1 16
31.8 even 5 961.2.g.p.816.1 16
31.9 even 15 961.2.d.j.374.1 8
31.10 even 15 961.2.d.h.531.2 8
31.11 odd 30 961.2.d.j.388.2 8
31.12 odd 30 961.2.g.i.844.2 16
31.13 odd 30 961.2.d.h.628.1 8
31.14 even 15 961.2.g.p.732.2 16
31.15 odd 10 961.2.g.i.846.2 16
31.16 even 5 961.2.g.i.846.1 16
31.17 odd 30 961.2.g.p.732.1 16
31.18 even 15 961.2.d.h.628.2 8
31.19 even 15 961.2.g.i.844.1 16
31.20 even 15 961.2.d.j.388.1 8
31.21 odd 30 961.2.d.h.531.1 8
31.22 odd 30 961.2.d.j.374.2 8
31.23 odd 10 961.2.g.p.816.2 16
31.24 odd 30 961.2.g.p.338.2 16
31.25 even 3 inner 961.2.c.h.521.1 8
31.26 odd 6 961.2.a.h.1.1 4
31.27 odd 10 961.2.g.p.235.1 16
31.28 even 15 961.2.g.i.448.2 16
31.29 odd 10 961.2.g.i.547.1 16
31.30 odd 2 inner 961.2.c.h.439.2 8
93.5 odd 6 8649.2.a.r.1.3 4
93.26 even 6 8649.2.a.r.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.h.1.1 4 31.26 odd 6
961.2.a.h.1.2 yes 4 31.5 even 3
961.2.c.h.439.1 8 1.1 even 1 trivial
961.2.c.h.439.2 8 31.30 odd 2 inner
961.2.c.h.521.1 8 31.25 even 3 inner
961.2.c.h.521.2 8 31.6 odd 6 inner
961.2.d.h.531.1 8 31.21 odd 30
961.2.d.h.531.2 8 31.10 even 15
961.2.d.h.628.1 8 31.13 odd 30
961.2.d.h.628.2 8 31.18 even 15
961.2.d.j.374.1 8 31.9 even 15
961.2.d.j.374.2 8 31.22 odd 30
961.2.d.j.388.1 8 31.20 even 15
961.2.d.j.388.2 8 31.11 odd 30
961.2.g.i.448.1 16 31.3 odd 30
961.2.g.i.448.2 16 31.28 even 15
961.2.g.i.547.1 16 31.29 odd 10
961.2.g.i.547.2 16 31.2 even 5
961.2.g.i.844.1 16 31.19 even 15
961.2.g.i.844.2 16 31.12 odd 30
961.2.g.i.846.1 16 31.16 even 5
961.2.g.i.846.2 16 31.15 odd 10
961.2.g.p.235.1 16 31.27 odd 10
961.2.g.p.235.2 16 31.4 even 5
961.2.g.p.338.1 16 31.7 even 15
961.2.g.p.338.2 16 31.24 odd 30
961.2.g.p.732.1 16 31.17 odd 30
961.2.g.p.732.2 16 31.14 even 15
961.2.g.p.816.1 16 31.8 even 5
961.2.g.p.816.2 16 31.23 odd 10
8649.2.a.r.1.3 4 93.5 odd 6
8649.2.a.r.1.4 4 93.26 even 6