Properties

Label 961.2.d.j.374.2
Level $961$
Weight $2$
Character 961.374
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,2,Mod(374,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.64000000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 2x^{6} + 4x^{4} + 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 374.2
Root \(0.437016 - 1.34500i\) of defining polynomial
Character \(\chi\) \(=\) 961.374
Dual form 961.2.d.j.388.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 - 0.224514i) q^{2} +(1.85123 - 1.34500i) q^{3} +(-0.572949 - 1.76336i) q^{4} -2.23607 q^{5} -0.874032 q^{6} +(-0.309017 - 0.951057i) q^{7} +(-0.454915 + 1.40008i) q^{8} +(0.690983 - 2.12663i) q^{9} +(0.690983 + 0.502029i) q^{10} +(-1.31105 - 4.03499i) q^{11} +(-3.43237 - 2.49376i) q^{12} +(5.55369 - 4.03499i) q^{13} +(-0.118034 + 0.363271i) q^{14} +(-4.13948 + 3.00750i) q^{15} +(-2.54508 + 1.84911i) q^{16} +(-0.166925 + 0.513743i) q^{17} +(-0.690983 + 0.502029i) q^{18} +(-0.809017 - 0.587785i) q^{19} +(1.28115 + 3.94298i) q^{20} +(-1.85123 - 1.34500i) q^{21} +(-0.500776 + 1.54123i) q^{22} +(-2.12132 + 6.52875i) q^{23} +(1.04096 + 3.20374i) q^{24} -2.62210 q^{26} +(0.540182 + 1.66251i) q^{27} +(-1.50000 + 1.08981i) q^{28} +(-2.99535 - 2.17625i) q^{29} +1.95440 q^{30} +4.14590 q^{32} +(-7.85410 - 5.70634i) q^{33} +(0.166925 - 0.121278i) q^{34} +(0.690983 + 2.12663i) q^{35} -4.14590 q^{36} -4.24264 q^{37} +(0.118034 + 0.363271i) q^{38} +(4.85410 - 14.9394i) q^{39} +(1.01722 - 3.13068i) q^{40} +(-6.04508 - 4.39201i) q^{41} +(0.270091 + 0.831254i) q^{42} +(-0.166925 - 0.121278i) q^{43} +(-6.36396 + 4.62369i) q^{44} +(-1.54508 + 4.75528i) q^{45} +(2.12132 - 1.54123i) q^{46} +(-3.00000 + 2.17963i) q^{47} +(-2.22449 + 6.84626i) q^{48} +(4.85410 - 3.52671i) q^{49} +(0.381966 + 1.17557i) q^{51} +(-10.2971 - 7.48128i) q^{52} +(-1.62054 + 4.98752i) q^{53} +(0.206331 - 0.635021i) q^{54} +(2.93159 + 9.02251i) q^{55} +1.47214 q^{56} -2.28825 q^{57} +(0.437016 + 1.34500i) q^{58} +(4.80902 - 3.49396i) q^{59} +(7.67501 + 5.57622i) q^{60} -4.44897 q^{61} -2.23607 q^{63} +(3.80902 + 2.76741i) q^{64} +(-12.4184 + 9.02251i) q^{65} +(1.14590 + 3.52671i) q^{66} +6.00000 q^{67} +1.00155 q^{68} +(4.85410 + 14.9394i) q^{69} +(0.263932 - 0.812299i) q^{70} +(2.30902 - 7.10642i) q^{71} +(2.66312 + 1.93487i) q^{72} +(-1.31105 - 4.03499i) q^{73} +(1.31105 + 0.952532i) q^{74} +(-0.572949 + 1.76336i) q^{76} +(-3.43237 + 2.49376i) q^{77} +(-4.85410 + 3.52671i) q^{78} +(3.43237 - 10.5637i) q^{79} +(5.69098 - 4.13474i) q^{80} +(8.66312 + 6.29412i) q^{81} +(0.881966 + 2.71441i) q^{82} +(2.55834 + 1.85874i) q^{83} +(-1.31105 + 4.03499i) q^{84} +(0.373256 - 1.14876i) q^{85} +(0.0243541 + 0.0749541i) q^{86} -8.47214 q^{87} +6.24574 q^{88} +(1.81182 + 5.57622i) q^{89} +(1.54508 - 1.12257i) q^{90} +(-5.55369 - 4.03499i) q^{91} +12.7279 q^{92} +1.41641 q^{94} +(1.80902 + 1.31433i) q^{95} +(7.67501 - 5.57622i) q^{96} +(-2.16312 - 6.65740i) q^{97} -2.29180 q^{98} -9.48683 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 18 q^{4} + 2 q^{7} - 26 q^{8} + 10 q^{9} + 10 q^{10} + 8 q^{14} + 2 q^{16} - 10 q^{18} - 2 q^{19} - 30 q^{20} - 12 q^{28} + 60 q^{32} - 36 q^{33} + 10 q^{35} - 60 q^{36} - 8 q^{38} + 12 q^{39}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 0.224514i −0.218508 0.158755i 0.473147 0.880984i \(-0.343118\pi\)
−0.691655 + 0.722228i \(0.743118\pi\)
\(3\) 1.85123 1.34500i 1.06881 0.776534i 0.0931103 0.995656i \(-0.470319\pi\)
0.975698 + 0.219121i \(0.0703191\pi\)
\(4\) −0.572949 1.76336i −0.286475 0.881678i
\(5\) −2.23607 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) −0.874032 −0.356822
\(7\) −0.309017 0.951057i −0.116797 0.359466i 0.875520 0.483181i \(-0.160519\pi\)
−0.992318 + 0.123716i \(0.960519\pi\)
\(8\) −0.454915 + 1.40008i −0.160837 + 0.495005i
\(9\) 0.690983 2.12663i 0.230328 0.708876i
\(10\) 0.690983 + 0.502029i 0.218508 + 0.158755i
\(11\) −1.31105 4.03499i −0.395296 1.21660i −0.928731 0.370755i \(-0.879099\pi\)
0.533435 0.845841i \(-0.320901\pi\)
\(12\) −3.43237 2.49376i −0.990839 0.719887i
\(13\) 5.55369 4.03499i 1.54032 1.11911i 0.590179 0.807272i \(-0.299057\pi\)
0.950137 0.311833i \(-0.100943\pi\)
\(14\) −0.118034 + 0.363271i −0.0315459 + 0.0970883i
\(15\) −4.13948 + 3.00750i −1.06881 + 0.776534i
\(16\) −2.54508 + 1.84911i −0.636271 + 0.462278i
\(17\) −0.166925 + 0.513743i −0.0404853 + 0.124601i −0.969256 0.246053i \(-0.920866\pi\)
0.928771 + 0.370654i \(0.120866\pi\)
\(18\) −0.690983 + 0.502029i −0.162866 + 0.118329i
\(19\) −0.809017 0.587785i −0.185601 0.134847i 0.491105 0.871100i \(-0.336593\pi\)
−0.676706 + 0.736253i \(0.736593\pi\)
\(20\) 1.28115 + 3.94298i 0.286475 + 0.881678i
\(21\) −1.85123 1.34500i −0.403971 0.293502i
\(22\) −0.500776 + 1.54123i −0.106766 + 0.328591i
\(23\) −2.12132 + 6.52875i −0.442326 + 1.36134i 0.443064 + 0.896490i \(0.353891\pi\)
−0.885390 + 0.464849i \(0.846109\pi\)
\(24\) 1.04096 + 3.20374i 0.212485 + 0.653960i
\(25\) 0 0
\(26\) −2.62210 −0.514235
\(27\) 0.540182 + 1.66251i 0.103958 + 0.319950i
\(28\) −1.50000 + 1.08981i −0.283473 + 0.205955i
\(29\) −2.99535 2.17625i −0.556223 0.404120i 0.273852 0.961772i \(-0.411702\pi\)
−0.830075 + 0.557652i \(0.811702\pi\)
\(30\) 1.95440 0.356822
\(31\) 0 0
\(32\) 4.14590 0.732898
\(33\) −7.85410 5.70634i −1.36722 0.993346i
\(34\) 0.166925 0.121278i 0.0286274 0.0207991i
\(35\) 0.690983 + 2.12663i 0.116797 + 0.359466i
\(36\) −4.14590 −0.690983
\(37\) −4.24264 −0.697486 −0.348743 0.937218i \(-0.613391\pi\)
−0.348743 + 0.937218i \(0.613391\pi\)
\(38\) 0.118034 + 0.363271i 0.0191476 + 0.0589304i
\(39\) 4.85410 14.9394i 0.777278 2.39222i
\(40\) 1.01722 3.13068i 0.160837 0.495005i
\(41\) −6.04508 4.39201i −0.944084 0.685917i 0.00531652 0.999986i \(-0.498308\pi\)
−0.949400 + 0.314069i \(0.898308\pi\)
\(42\) 0.270091 + 0.831254i 0.0416759 + 0.128265i
\(43\) −0.166925 0.121278i −0.0254559 0.0184948i 0.574985 0.818164i \(-0.305008\pi\)
−0.600440 + 0.799669i \(0.705008\pi\)
\(44\) −6.36396 + 4.62369i −0.959403 + 0.697047i
\(45\) −1.54508 + 4.75528i −0.230328 + 0.708876i
\(46\) 2.12132 1.54123i 0.312772 0.227242i
\(47\) −3.00000 + 2.17963i −0.437595 + 0.317931i −0.784679 0.619903i \(-0.787172\pi\)
0.347084 + 0.937834i \(0.387172\pi\)
\(48\) −2.22449 + 6.84626i −0.321077 + 0.988173i
\(49\) 4.85410 3.52671i 0.693443 0.503816i
\(50\) 0 0
\(51\) 0.381966 + 1.17557i 0.0534859 + 0.164613i
\(52\) −10.2971 7.48128i −1.42795 1.03747i
\(53\) −1.62054 + 4.98752i −0.222599 + 0.685089i 0.775928 + 0.630822i \(0.217282\pi\)
−0.998526 + 0.0542670i \(0.982718\pi\)
\(54\) 0.206331 0.635021i 0.0280781 0.0864155i
\(55\) 2.93159 + 9.02251i 0.395296 + 1.21660i
\(56\) 1.47214 0.196722
\(57\) −2.28825 −0.303086
\(58\) 0.437016 + 1.34500i 0.0573830 + 0.176607i
\(59\) 4.80902 3.49396i 0.626081 0.454874i −0.228960 0.973436i \(-0.573532\pi\)
0.855040 + 0.518562i \(0.173532\pi\)
\(60\) 7.67501 + 5.57622i 0.990839 + 0.719887i
\(61\) −4.44897 −0.569632 −0.284816 0.958582i \(-0.591933\pi\)
−0.284816 + 0.958582i \(0.591933\pi\)
\(62\) 0 0
\(63\) −2.23607 −0.281718
\(64\) 3.80902 + 2.76741i 0.476127 + 0.345927i
\(65\) −12.4184 + 9.02251i −1.54032 + 1.11911i
\(66\) 1.14590 + 3.52671i 0.141050 + 0.434108i
\(67\) 6.00000 0.733017 0.366508 0.930415i \(-0.380553\pi\)
0.366508 + 0.930415i \(0.380553\pi\)
\(68\) 1.00155 0.121456
\(69\) 4.85410 + 14.9394i 0.584365 + 1.79849i
\(70\) 0.263932 0.812299i 0.0315459 0.0970883i
\(71\) 2.30902 7.10642i 0.274030 0.843377i −0.715445 0.698670i \(-0.753776\pi\)
0.989474 0.144708i \(-0.0462242\pi\)
\(72\) 2.66312 + 1.93487i 0.313852 + 0.228027i
\(73\) −1.31105 4.03499i −0.153447 0.472260i 0.844554 0.535471i \(-0.179866\pi\)
−0.998000 + 0.0632110i \(0.979866\pi\)
\(74\) 1.31105 + 0.952532i 0.152406 + 0.110730i
\(75\) 0 0
\(76\) −0.572949 + 1.76336i −0.0657218 + 0.202271i
\(77\) −3.43237 + 2.49376i −0.391155 + 0.284191i
\(78\) −4.85410 + 3.52671i −0.549619 + 0.399321i
\(79\) 3.43237 10.5637i 0.386172 1.18851i −0.549455 0.835523i \(-0.685165\pi\)
0.935627 0.352991i \(-0.114835\pi\)
\(80\) 5.69098 4.13474i 0.636271 0.462278i
\(81\) 8.66312 + 6.29412i 0.962569 + 0.699347i
\(82\) 0.881966 + 2.71441i 0.0973969 + 0.299757i
\(83\) 2.55834 + 1.85874i 0.280814 + 0.204023i 0.719272 0.694728i \(-0.244475\pi\)
−0.438458 + 0.898751i \(0.644475\pi\)
\(84\) −1.31105 + 4.03499i −0.143047 + 0.440254i
\(85\) 0.373256 1.14876i 0.0404853 0.124601i
\(86\) 0.0243541 + 0.0749541i 0.00262617 + 0.00808251i
\(87\) −8.47214 −0.908308
\(88\) 6.24574 0.665799
\(89\) 1.81182 + 5.57622i 0.192053 + 0.591078i 0.999998 + 0.00182083i \(0.000579589\pi\)
−0.807945 + 0.589257i \(0.799420\pi\)
\(90\) 1.54508 1.12257i 0.162866 0.118329i
\(91\) −5.55369 4.03499i −0.582185 0.422982i
\(92\) 12.7279 1.32698
\(93\) 0 0
\(94\) 1.41641 0.146091
\(95\) 1.80902 + 1.31433i 0.185601 + 0.134847i
\(96\) 7.67501 5.57622i 0.783327 0.569121i
\(97\) −2.16312 6.65740i −0.219631 0.675956i −0.998792 0.0491321i \(-0.984354\pi\)
0.779161 0.626824i \(-0.215646\pi\)
\(98\) −2.29180 −0.231506
\(99\) −9.48683 −0.953463
\(100\) 0 0
\(101\) −0.690983 + 2.12663i −0.0687554 + 0.211607i −0.979531 0.201295i \(-0.935485\pi\)
0.910775 + 0.412902i \(0.135485\pi\)
\(102\) 0.145898 0.449028i 0.0144461 0.0444604i
\(103\) 2.19098 + 1.59184i 0.215884 + 0.156849i 0.690472 0.723359i \(-0.257403\pi\)
−0.474588 + 0.880208i \(0.657403\pi\)
\(104\) 3.12287 + 9.61121i 0.306223 + 0.942457i
\(105\) 4.13948 + 3.00750i 0.403971 + 0.293502i
\(106\) 1.62054 1.17739i 0.157401 0.114359i
\(107\) −2.30902 + 7.10642i −0.223221 + 0.687004i 0.775246 + 0.631659i \(0.217626\pi\)
−0.998467 + 0.0553447i \(0.982374\pi\)
\(108\) 2.62210 1.90506i 0.252311 0.183315i
\(109\) 11.8992 8.64527i 1.13974 0.828066i 0.152653 0.988280i \(-0.451218\pi\)
0.987082 + 0.160214i \(0.0512183\pi\)
\(110\) 1.11977 3.44629i 0.106766 0.328591i
\(111\) −7.85410 + 5.70634i −0.745478 + 0.541622i
\(112\) 2.54508 + 1.84911i 0.240488 + 0.174725i
\(113\) −4.39919 13.5393i −0.413841 1.27367i −0.913284 0.407324i \(-0.866462\pi\)
0.499443 0.866347i \(-0.333538\pi\)
\(114\) 0.707107 + 0.513743i 0.0662266 + 0.0481165i
\(115\) 4.74342 14.5987i 0.442326 1.36134i
\(116\) −2.12132 + 6.52875i −0.196960 + 0.606179i
\(117\) −4.74342 14.5987i −0.438529 1.34965i
\(118\) −2.27051 −0.209017
\(119\) 0.540182 0.0495184
\(120\) −2.32765 7.16377i −0.212485 0.653960i
\(121\) −5.66312 + 4.11450i −0.514829 + 0.374045i
\(122\) 1.37481 + 0.998856i 0.124469 + 0.0904322i
\(123\) −17.0981 −1.54168
\(124\) 0 0
\(125\) 11.1803 1.00000
\(126\) 0.690983 + 0.502029i 0.0615577 + 0.0447243i
\(127\) 7.67501 5.57622i 0.681047 0.494810i −0.192658 0.981266i \(-0.561711\pi\)
0.873705 + 0.486456i \(0.161711\pi\)
\(128\) −3.11803 9.59632i −0.275598 0.848203i
\(129\) −0.472136 −0.0415693
\(130\) 5.86319 0.514235
\(131\) −6.00000 18.4661i −0.524222 1.61339i −0.765848 0.643021i \(-0.777681\pi\)
0.241626 0.970369i \(-0.422319\pi\)
\(132\) −5.56231 + 17.1190i −0.484137 + 1.49002i
\(133\) −0.309017 + 0.951057i −0.0267952 + 0.0824671i
\(134\) −1.85410 1.34708i −0.160170 0.116370i
\(135\) −1.20788 3.71748i −0.103958 0.319950i
\(136\) −0.643347 0.467419i −0.0551666 0.0400808i
\(137\) 5.55369 4.03499i 0.474484 0.344733i −0.324702 0.945816i \(-0.605264\pi\)
0.799186 + 0.601084i \(0.205264\pi\)
\(138\) 1.85410 5.70634i 0.157832 0.485756i
\(139\) 0.810272 0.588697i 0.0687264 0.0499327i −0.552892 0.833253i \(-0.686476\pi\)
0.621618 + 0.783321i \(0.286476\pi\)
\(140\) 3.35410 2.43690i 0.283473 0.205955i
\(141\) −2.62210 + 8.06998i −0.220820 + 0.679615i
\(142\) −2.30902 + 1.67760i −0.193768 + 0.140781i
\(143\) −23.5623 17.1190i −1.97038 1.43156i
\(144\) 2.17376 + 6.69015i 0.181147 + 0.557513i
\(145\) 6.69781 + 4.86624i 0.556223 + 0.404120i
\(146\) −0.500776 + 1.54123i −0.0414445 + 0.127553i
\(147\) 4.24264 13.0575i 0.349927 1.07696i
\(148\) 2.43082 + 7.48128i 0.199812 + 0.614958i
\(149\) 13.4164 1.09911 0.549557 0.835456i \(-0.314796\pi\)
0.549557 + 0.835456i \(0.314796\pi\)
\(150\) 0 0
\(151\) −0.937792 2.88623i −0.0763164 0.234878i 0.905620 0.424091i \(-0.139406\pi\)
−0.981936 + 0.189213i \(0.939406\pi\)
\(152\) 1.19098 0.865300i 0.0966015 0.0701851i
\(153\) 0.977198 + 0.709976i 0.0790017 + 0.0573981i
\(154\) 1.62054 0.130587
\(155\) 0 0
\(156\) −29.1246 −2.33184
\(157\) 3.80902 + 2.76741i 0.303993 + 0.220864i 0.729315 0.684179i \(-0.239839\pi\)
−0.425322 + 0.905042i \(0.639839\pi\)
\(158\) −3.43237 + 2.49376i −0.273065 + 0.198393i
\(159\) 3.70820 + 11.4127i 0.294080 + 0.905084i
\(160\) −9.27051 −0.732898
\(161\) 6.86474 0.541017
\(162\) −1.26393 3.88998i −0.0993039 0.305626i
\(163\) −3.83688 + 11.8087i −0.300528 + 0.924929i 0.680781 + 0.732487i \(0.261641\pi\)
−0.981308 + 0.192442i \(0.938359\pi\)
\(164\) −4.28115 + 13.1760i −0.334302 + 1.02888i
\(165\) 17.5623 + 12.7598i 1.36722 + 0.993346i
\(166\) −0.373256 1.14876i −0.0289703 0.0891614i
\(167\) −5.99070 4.35250i −0.463575 0.336807i 0.331357 0.943505i \(-0.392493\pi\)
−0.794932 + 0.606699i \(0.792493\pi\)
\(168\) 2.72526 1.98002i 0.210258 0.152762i
\(169\) 10.5451 32.4544i 0.811160 2.49649i
\(170\) −0.373256 + 0.271187i −0.0286274 + 0.0207991i
\(171\) −1.80902 + 1.31433i −0.138339 + 0.100509i
\(172\) −0.118217 + 0.363835i −0.00901397 + 0.0277422i
\(173\) −14.5623 + 10.5801i −1.10715 + 0.804393i −0.982213 0.187772i \(-0.939873\pi\)
−0.124939 + 0.992164i \(0.539873\pi\)
\(174\) 2.61803 + 1.90211i 0.198473 + 0.144199i
\(175\) 0 0
\(176\) 10.7979 + 7.84512i 0.813921 + 0.591348i
\(177\) 4.20323 12.9362i 0.315934 0.972346i
\(178\) 0.692055 2.12993i 0.0518717 0.159645i
\(179\) −5.07727 15.6262i −0.379493 1.16796i −0.940397 0.340078i \(-0.889546\pi\)
0.560904 0.827881i \(-0.310454\pi\)
\(180\) 9.27051 0.690983
\(181\) −18.1784 −1.35119 −0.675597 0.737271i \(-0.736114\pi\)
−0.675597 + 0.737271i \(0.736114\pi\)
\(182\) 0.810272 + 2.49376i 0.0600614 + 0.184850i
\(183\) −8.23607 + 5.98385i −0.608828 + 0.442339i
\(184\) −8.17578 5.94006i −0.602727 0.437907i
\(185\) 9.48683 0.697486
\(186\) 0 0
\(187\) 2.29180 0.167593
\(188\) 5.56231 + 4.04125i 0.405673 + 0.294739i
\(189\) 1.41421 1.02749i 0.102869 0.0747386i
\(190\) −0.263932 0.812299i −0.0191476 0.0589304i
\(191\) 14.2361 1.03009 0.515043 0.857164i \(-0.327776\pi\)
0.515043 + 0.857164i \(0.327776\pi\)
\(192\) 10.7735 0.777512
\(193\) −2.25329 6.93491i −0.162195 0.499186i 0.836623 0.547779i \(-0.184526\pi\)
−0.998819 + 0.0485928i \(0.984526\pi\)
\(194\) −0.826238 + 2.54290i −0.0593204 + 0.182569i
\(195\) −10.8541 + 33.4055i −0.777278 + 2.39222i
\(196\) −9.00000 6.53888i −0.642857 0.467063i
\(197\) 2.28825 + 7.04250i 0.163031 + 0.501757i 0.998886 0.0471932i \(-0.0150276\pi\)
−0.835855 + 0.548950i \(0.815028\pi\)
\(198\) 2.93159 + 2.12993i 0.208339 + 0.151367i
\(199\) −11.9176 + 8.65868i −0.844820 + 0.613798i −0.923713 0.383086i \(-0.874861\pi\)
0.0788931 + 0.996883i \(0.474861\pi\)
\(200\) 0 0
\(201\) 11.1074 8.06998i 0.783454 0.569213i
\(202\) 0.690983 0.502029i 0.0486174 0.0353226i
\(203\) −1.14412 + 3.52125i −0.0803017 + 0.247143i
\(204\) 1.85410 1.34708i 0.129813 0.0943147i
\(205\) 13.5172 + 9.82084i 0.944084 + 0.685917i
\(206\) −0.319660 0.983813i −0.0222718 0.0685455i
\(207\) 12.4184 + 9.02251i 0.863140 + 0.627108i
\(208\) −6.67346 + 20.5388i −0.462721 + 1.42411i
\(209\) −1.31105 + 4.03499i −0.0906871 + 0.279106i
\(210\) −0.603941 1.85874i −0.0416759 0.128265i
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) 9.72327 0.667797
\(213\) −5.28360 16.2612i −0.362026 1.11420i
\(214\) 2.30902 1.67760i 0.157841 0.114678i
\(215\) 0.373256 + 0.271187i 0.0254559 + 0.0184948i
\(216\) −2.57339 −0.175097
\(217\) 0 0
\(218\) −5.61803 −0.380501
\(219\) −7.85410 5.70634i −0.530731 0.385599i
\(220\) 14.2302 10.3389i 0.959403 0.697047i
\(221\) 1.14590 + 3.52671i 0.0770814 + 0.237232i
\(222\) 3.70820 0.248878
\(223\) 21.8021 1.45998 0.729988 0.683460i \(-0.239526\pi\)
0.729988 + 0.683460i \(0.239526\pi\)
\(224\) −1.28115 3.94298i −0.0856006 0.263452i
\(225\) 0 0
\(226\) −1.68034 + 5.17155i −0.111775 + 0.344007i
\(227\) −12.7082 9.23305i −0.843473 0.612819i 0.0798656 0.996806i \(-0.474551\pi\)
−0.923339 + 0.383987i \(0.874551\pi\)
\(228\) 1.31105 + 4.03499i 0.0868263 + 0.267224i
\(229\) 3.43237 + 2.49376i 0.226817 + 0.164792i 0.695390 0.718632i \(-0.255232\pi\)
−0.468573 + 0.883425i \(0.655232\pi\)
\(230\) −4.74342 + 3.44629i −0.312772 + 0.227242i
\(231\) −3.00000 + 9.23305i −0.197386 + 0.607490i
\(232\) 4.40957 3.20374i 0.289502 0.210336i
\(233\) 3.66312 2.66141i 0.239979 0.174355i −0.461295 0.887247i \(-0.652615\pi\)
0.701274 + 0.712892i \(0.252615\pi\)
\(234\) −1.81182 + 5.57622i −0.118443 + 0.364529i
\(235\) 6.70820 4.87380i 0.437595 0.317931i
\(236\) −8.91641 6.47815i −0.580409 0.421692i
\(237\) −7.85410 24.1724i −0.510179 1.57017i
\(238\) −0.166925 0.121278i −0.0108202 0.00786130i
\(239\) 5.05291 15.5513i 0.326846 1.00593i −0.643755 0.765232i \(-0.722624\pi\)
0.970601 0.240696i \(-0.0773757\pi\)
\(240\) 4.97410 15.3087i 0.321077 0.988173i
\(241\) −4.55214 14.0100i −0.293229 0.902466i −0.983811 0.179211i \(-0.942645\pi\)
0.690582 0.723254i \(-0.257355\pi\)
\(242\) 2.67376 0.171876
\(243\) 19.2588 1.23545
\(244\) 2.54903 + 7.84512i 0.163185 + 0.502232i
\(245\) −10.8541 + 7.88597i −0.693443 + 0.503816i
\(246\) 5.28360 + 3.83876i 0.336870 + 0.244750i
\(247\) −6.86474 −0.436793
\(248\) 0 0
\(249\) 7.23607 0.458567
\(250\) −3.45492 2.51014i −0.218508 0.158755i
\(251\) −19.2194 + 13.9637i −1.21312 + 0.881382i −0.995510 0.0946545i \(-0.969825\pi\)
−0.217608 + 0.976036i \(0.569825\pi\)
\(252\) 1.28115 + 3.94298i 0.0807050 + 0.248385i
\(253\) 29.1246 1.83105
\(254\) −3.62365 −0.227368
\(255\) −0.854102 2.62866i −0.0534859 0.164613i
\(256\) 1.71885 5.29007i 0.107428 0.330629i
\(257\) 7.39919 22.7724i 0.461549 1.42050i −0.401723 0.915761i \(-0.631589\pi\)
0.863272 0.504739i \(-0.168411\pi\)
\(258\) 0.145898 + 0.106001i 0.00908321 + 0.00659934i
\(259\) 1.31105 + 4.03499i 0.0814646 + 0.250722i
\(260\) 23.0250 + 16.7287i 1.42795 + 1.03747i
\(261\) −6.69781 + 4.86624i −0.414584 + 0.301213i
\(262\) −2.29180 + 7.05342i −0.141588 + 0.435762i
\(263\) 2.18508 1.58755i 0.134738 0.0978928i −0.518375 0.855153i \(-0.673463\pi\)
0.653113 + 0.757261i \(0.273463\pi\)
\(264\) 11.5623 8.40051i 0.711611 0.517015i
\(265\) 3.62365 11.1524i 0.222599 0.685089i
\(266\) 0.309017 0.224514i 0.0189470 0.0137658i
\(267\) 10.8541 + 7.88597i 0.664260 + 0.482613i
\(268\) −3.43769 10.5801i −0.209991 0.646285i
\(269\) 11.9814 + 8.70500i 0.730519 + 0.530753i 0.889728 0.456492i \(-0.150894\pi\)
−0.159208 + 0.987245i \(0.550894\pi\)
\(270\) −0.461370 + 1.41995i −0.0280781 + 0.0864155i
\(271\) 8.67656 26.7037i 0.527064 1.62213i −0.233135 0.972444i \(-0.574899\pi\)
0.760199 0.649690i \(-0.225101\pi\)
\(272\) −0.525130 1.61618i −0.0318407 0.0979955i
\(273\) −15.7082 −0.950704
\(274\) −2.62210 −0.158407
\(275\) 0 0
\(276\) 23.5623 17.1190i 1.41828 1.03044i
\(277\) 15.8508 + 11.5163i 0.952382 + 0.691946i 0.951369 0.308054i \(-0.0996776\pi\)
0.00101288 + 0.999999i \(0.499678\pi\)
\(278\) −0.382559 −0.0229443
\(279\) 0 0
\(280\) −3.29180 −0.196722
\(281\) 25.3713 + 18.4333i 1.51353 + 1.09964i 0.964582 + 0.263782i \(0.0849699\pi\)
0.548944 + 0.835859i \(0.315030\pi\)
\(282\) 2.62210 1.90506i 0.156144 0.113445i
\(283\) 7.41641 + 22.8254i 0.440860 + 1.35683i 0.886961 + 0.461844i \(0.152812\pi\)
−0.446101 + 0.894982i \(0.647188\pi\)
\(284\) −13.8541 −0.822090
\(285\) 5.11667 0.303086
\(286\) 3.43769 + 10.5801i 0.203275 + 0.625616i
\(287\) −2.30902 + 7.10642i −0.136297 + 0.419479i
\(288\) 2.86475 8.81678i 0.168807 0.519534i
\(289\) 13.5172 + 9.82084i 0.795131 + 0.577696i
\(290\) −0.977198 3.00750i −0.0573830 0.176607i
\(291\) −12.9586 9.41498i −0.759647 0.551916i
\(292\) −6.36396 + 4.62369i −0.372423 + 0.270581i
\(293\) −4.85410 + 14.9394i −0.283580 + 0.872768i 0.703241 + 0.710951i \(0.251735\pi\)
−0.986821 + 0.161817i \(0.948265\pi\)
\(294\) −4.24264 + 3.08246i −0.247436 + 0.179773i
\(295\) −10.7533 + 7.81272i −0.626081 + 0.454874i
\(296\) 1.93004 5.94006i 0.112181 0.345259i
\(297\) 6.00000 4.35926i 0.348155 0.252950i
\(298\) −4.14590 3.01217i −0.240165 0.174490i
\(299\) 14.5623 + 44.8182i 0.842160 + 2.59190i
\(300\) 0 0
\(301\) −0.0637598 + 0.196232i −0.00367505 + 0.0113106i
\(302\) −0.358205 + 1.10244i −0.0206124 + 0.0634383i
\(303\) 1.58114 + 4.86624i 0.0908341 + 0.279558i
\(304\) 3.14590 0.180430
\(305\) 9.94820 0.569632
\(306\) −0.142571 0.438789i −0.00815025 0.0250839i
\(307\) 13.0451 9.47781i 0.744522 0.540927i −0.149602 0.988746i \(-0.547799\pi\)
0.894124 + 0.447819i \(0.147799\pi\)
\(308\) 6.36396 + 4.62369i 0.362620 + 0.263459i
\(309\) 6.19704 0.352537
\(310\) 0 0
\(311\) 16.5279 0.937209 0.468605 0.883408i \(-0.344757\pi\)
0.468605 + 0.883408i \(0.344757\pi\)
\(312\) 18.7082 + 13.5923i 1.05914 + 0.769513i
\(313\) −16.9949 + 12.3475i −0.960609 + 0.697924i −0.953292 0.302050i \(-0.902329\pi\)
−0.00731728 + 0.999973i \(0.502329\pi\)
\(314\) −0.555728 1.71036i −0.0313616 0.0965209i
\(315\) 5.00000 0.281718
\(316\) −20.5942 −1.15851
\(317\) 6.72542 + 20.6987i 0.377737 + 1.16256i 0.941613 + 0.336697i \(0.109310\pi\)
−0.563876 + 0.825860i \(0.690690\pi\)
\(318\) 1.41641 4.35926i 0.0794282 0.244455i
\(319\) −4.85410 + 14.9394i −0.271778 + 0.836445i
\(320\) −8.51722 6.18812i −0.476127 0.345927i
\(321\) 5.28360 + 16.2612i 0.294902 + 0.907614i
\(322\) −2.12132 1.54123i −0.118217 0.0858894i
\(323\) 0.437016 0.317511i 0.0243162 0.0176668i
\(324\) 6.13525 18.8824i 0.340847 1.04902i
\(325\) 0 0
\(326\) 3.83688 2.78766i 0.212505 0.154394i
\(327\) 10.4003 32.0087i 0.575136 1.77009i
\(328\) 8.89919 6.46564i 0.491375 0.357005i
\(329\) 3.00000 + 2.17963i 0.165395 + 0.120167i
\(330\) −2.56231 7.88597i −0.141050 0.434108i
\(331\) −20.7368 15.0662i −1.13980 0.828111i −0.152706 0.988272i \(-0.548799\pi\)
−0.987091 + 0.160161i \(0.948799\pi\)
\(332\) 1.81182 5.57622i 0.0994368 0.306035i
\(333\) −2.93159 + 9.02251i −0.160650 + 0.494431i
\(334\) 0.874032 + 2.68999i 0.0478249 + 0.147190i
\(335\) −13.4164 −0.733017
\(336\) 7.19859 0.392715
\(337\) 1.81182 + 5.57622i 0.0986963 + 0.303756i 0.988199 0.153173i \(-0.0489492\pi\)
−0.889503 + 0.456929i \(0.848949\pi\)
\(338\) −10.5451 + 7.66145i −0.573577 + 0.416728i
\(339\) −26.3542 19.1475i −1.43137 1.03995i
\(340\) −2.23954 −0.121456
\(341\) 0 0
\(342\) 0.854102 0.0461845
\(343\) −10.5172 7.64121i −0.567877 0.412586i
\(344\) 0.245737 0.178538i 0.0132492 0.00962613i
\(345\) −10.8541 33.4055i −0.584365 1.79849i
\(346\) 6.87539 0.369623
\(347\) −25.8384 −1.38708 −0.693539 0.720419i \(-0.743950\pi\)
−0.693539 + 0.720419i \(0.743950\pi\)
\(348\) 4.85410 + 14.9394i 0.260207 + 0.800835i
\(349\) 1.85410 5.70634i 0.0992478 0.305453i −0.889090 0.457733i \(-0.848662\pi\)
0.988337 + 0.152280i \(0.0486615\pi\)
\(350\) 0 0
\(351\) 9.70820 + 7.05342i 0.518186 + 0.376484i
\(352\) −5.43547 16.7287i −0.289712 0.891641i
\(353\) 12.8554 + 9.34003i 0.684226 + 0.497119i 0.874757 0.484562i \(-0.161021\pi\)
−0.190531 + 0.981681i \(0.561021\pi\)
\(354\) −4.20323 + 3.05383i −0.223399 + 0.162309i
\(355\) −5.16312 + 15.8904i −0.274030 + 0.843377i
\(356\) 8.79478 6.38978i 0.466122 0.338658i
\(357\) 1.00000 0.726543i 0.0529256 0.0384527i
\(358\) −1.93934 + 5.96869i −0.102497 + 0.315455i
\(359\) −7.89919 + 5.73910i −0.416903 + 0.302898i −0.776391 0.630252i \(-0.782952\pi\)
0.359487 + 0.933150i \(0.382952\pi\)
\(360\) −5.95492 4.32650i −0.313852 0.228027i
\(361\) −5.56231 17.1190i −0.292753 0.901001i
\(362\) 5.61745 + 4.08132i 0.295247 + 0.214509i
\(363\) −4.94975 + 15.2338i −0.259794 + 0.799565i
\(364\) −3.93314 + 12.1050i −0.206153 + 0.634473i
\(365\) 2.93159 + 9.02251i 0.153447 + 0.472260i
\(366\) 3.88854 0.203257
\(367\) 12.3153 0.642851 0.321426 0.946935i \(-0.395838\pi\)
0.321426 + 0.946935i \(0.395838\pi\)
\(368\) −6.67346 20.5388i −0.347878 1.07066i
\(369\) −13.5172 + 9.82084i −0.703678 + 0.511252i
\(370\) −2.93159 2.12993i −0.152406 0.110730i
\(371\) 5.24419 0.272265
\(372\) 0 0
\(373\) −22.7082 −1.17579 −0.587893 0.808939i \(-0.700042\pi\)
−0.587893 + 0.808939i \(0.700042\pi\)
\(374\) −0.708204 0.514540i −0.0366204 0.0266062i
\(375\) 20.6974 15.0375i 1.06881 0.776534i
\(376\) −1.68692 5.19180i −0.0869961 0.267747i
\(377\) −25.4164 −1.30901
\(378\) −0.667701 −0.0343428
\(379\) −6.00000 18.4661i −0.308199 0.948540i −0.978464 0.206418i \(-0.933819\pi\)
0.670265 0.742122i \(-0.266181\pi\)
\(380\) 1.28115 3.94298i 0.0657218 0.202271i
\(381\) 6.70820 20.6457i 0.343672 1.05771i
\(382\) −4.39919 3.19620i −0.225082 0.163532i
\(383\) 5.88754 + 18.1200i 0.300839 + 0.925888i 0.981197 + 0.193008i \(0.0618243\pi\)
−0.680358 + 0.732880i \(0.738176\pi\)
\(384\) −18.6792 13.5712i −0.953220 0.692555i
\(385\) 7.67501 5.57622i 0.391155 0.284191i
\(386\) −0.860680 + 2.64890i −0.0438074 + 0.134825i
\(387\) −0.373256 + 0.271187i −0.0189737 + 0.0137852i
\(388\) −10.5000 + 7.62870i −0.533057 + 0.387288i
\(389\) −10.4397 + 32.1300i −0.529313 + 1.62906i 0.226314 + 0.974054i \(0.427332\pi\)
−0.755627 + 0.655002i \(0.772668\pi\)
\(390\) 10.8541 7.88597i 0.549619 0.399321i
\(391\) −3.00000 2.17963i −0.151717 0.110229i
\(392\) 2.72949 + 8.40051i 0.137860 + 0.424290i
\(393\) −35.9442 26.1150i −1.81315 1.31733i
\(394\) 0.874032 2.68999i 0.0440331 0.135520i
\(395\) −7.67501 + 23.6212i −0.386172 + 1.18851i
\(396\) 5.43547 + 16.7287i 0.273143 + 0.840647i
\(397\) 1.29180 0.0648334 0.0324167 0.999474i \(-0.489680\pi\)
0.0324167 + 0.999474i \(0.489680\pi\)
\(398\) 5.62675 0.282044
\(399\) 0.707107 + 2.17625i 0.0353996 + 0.108949i
\(400\) 0 0
\(401\) −2.99535 2.17625i −0.149581 0.108677i 0.510478 0.859891i \(-0.329469\pi\)
−0.660059 + 0.751214i \(0.729469\pi\)
\(402\) −5.24419 −0.261557
\(403\) 0 0
\(404\) 4.14590 0.206266
\(405\) −19.3713 14.0741i −0.962569 0.699347i
\(406\) 1.14412 0.831254i 0.0567819 0.0412544i
\(407\) 5.56231 + 17.1190i 0.275713 + 0.848558i
\(408\) −1.81966 −0.0900866
\(409\) 17.3531 0.858057 0.429028 0.903291i \(-0.358856\pi\)
0.429028 + 0.903291i \(0.358856\pi\)
\(410\) −1.97214 6.06961i −0.0973969 0.299757i
\(411\) 4.85410 14.9394i 0.239435 0.736906i
\(412\) 1.55166 4.77553i 0.0764449 0.235273i
\(413\) −4.80902 3.49396i −0.236636 0.171926i
\(414\) −1.81182 5.57622i −0.0890463 0.274056i
\(415\) −5.72061 4.15627i −0.280814 0.204023i
\(416\) 23.0250 16.7287i 1.12889 0.820190i
\(417\) 0.708204 2.17963i 0.0346809 0.106737i
\(418\) 1.31105 0.952532i 0.0641255 0.0465899i
\(419\) 15.0451 10.9309i 0.735000 0.534009i −0.156141 0.987735i \(-0.549905\pi\)
0.891141 + 0.453726i \(0.149905\pi\)
\(420\) 2.93159 9.02251i 0.143047 0.440254i
\(421\) 0.336881 0.244758i 0.0164186 0.0119288i −0.579546 0.814940i \(-0.696770\pi\)
0.595964 + 0.803011i \(0.296770\pi\)
\(422\) 1.54508 + 1.12257i 0.0752136 + 0.0546458i
\(423\) 2.56231 + 7.88597i 0.124584 + 0.383429i
\(424\) −6.24574 4.53780i −0.303320 0.220375i
\(425\) 0 0
\(426\) −2.01815 + 6.21124i −0.0977799 + 0.300936i
\(427\) 1.37481 + 4.23122i 0.0665316 + 0.204763i
\(428\) 13.8541 0.669663
\(429\) −66.6443 −3.21762
\(430\) −0.0544574 0.167602i −0.00262617 0.00808251i
\(431\) 0.0901699 0.0655123i 0.00434333 0.00315562i −0.585611 0.810592i \(-0.699146\pi\)
0.589955 + 0.807436i \(0.299146\pi\)
\(432\) −4.44897 3.23237i −0.214051 0.155517i
\(433\) −21.5958 −1.03783 −0.518913 0.854827i \(-0.673663\pi\)
−0.518913 + 0.854827i \(0.673663\pi\)
\(434\) 0 0
\(435\) 18.9443 0.908308
\(436\) −22.0623 16.0292i −1.05659 0.767660i
\(437\) 5.55369 4.03499i 0.265669 0.193020i
\(438\) 1.14590 + 3.52671i 0.0547531 + 0.168513i
\(439\) −25.0000 −1.19318 −0.596592 0.802544i \(-0.703479\pi\)
−0.596592 + 0.802544i \(0.703479\pi\)
\(440\) −13.9659 −0.665799
\(441\) −4.14590 12.7598i −0.197424 0.607608i
\(442\) 0.437694 1.34708i 0.0208190 0.0640742i
\(443\) 7.39919 22.7724i 0.351546 1.08195i −0.606439 0.795130i \(-0.707403\pi\)
0.957985 0.286817i \(-0.0925973\pi\)
\(444\) 14.5623 + 10.5801i 0.691096 + 0.502111i
\(445\) −4.05136 12.4688i −0.192053 0.591078i
\(446\) −6.73722 4.89487i −0.319016 0.231779i
\(447\) 24.8369 18.0450i 1.17474 0.853501i
\(448\) 1.45492 4.47777i 0.0687383 0.211555i
\(449\) −34.1324 + 24.7986i −1.61081 + 1.17032i −0.749915 + 0.661535i \(0.769905\pi\)
−0.860893 + 0.508786i \(0.830095\pi\)
\(450\) 0 0
\(451\) −9.79633 + 30.1500i −0.461291 + 1.41971i
\(452\) −21.3541 + 15.5147i −1.00441 + 0.729748i
\(453\) −5.61803 4.08174i −0.263958 0.191777i
\(454\) 1.85410 + 5.70634i 0.0870173 + 0.267812i
\(455\) 12.4184 + 9.02251i 0.582185 + 0.422982i
\(456\) 1.04096 3.20374i 0.0487473 0.150029i
\(457\) −3.49613 + 10.7600i −0.163542 + 0.503330i −0.998926 0.0463365i \(-0.985245\pi\)
0.835384 + 0.549667i \(0.185245\pi\)
\(458\) −0.500776 1.54123i −0.0233997 0.0720169i
\(459\) −0.944272 −0.0440748
\(460\) −28.4605 −1.32698
\(461\) 12.0846 + 37.1925i 0.562835 + 1.73223i 0.674299 + 0.738459i \(0.264446\pi\)
−0.111464 + 0.993768i \(0.535554\pi\)
\(462\) 3.00000 2.17963i 0.139573 0.101405i
\(463\) 12.2515 + 8.90124i 0.569376 + 0.413676i 0.834878 0.550435i \(-0.185538\pi\)
−0.265503 + 0.964110i \(0.585538\pi\)
\(464\) 11.6476 0.540724
\(465\) 0 0
\(466\) −1.72949 −0.0801171
\(467\) −12.6631 9.20029i −0.585979 0.425739i 0.254895 0.966969i \(-0.417959\pi\)
−0.840875 + 0.541230i \(0.817959\pi\)
\(468\) −23.0250 + 16.7287i −1.06433 + 0.773283i
\(469\) −1.85410 5.70634i −0.0856145 0.263494i
\(470\) −3.16718 −0.146091
\(471\) 10.7735 0.496418
\(472\) 2.70414 + 8.32248i 0.124468 + 0.383073i
\(473\) −0.270510 + 0.832544i −0.0124381 + 0.0382804i
\(474\) −3.00000 + 9.23305i −0.137795 + 0.424088i
\(475\) 0 0
\(476\) −0.309496 0.952532i −0.0141857 0.0436592i
\(477\) 9.48683 + 6.89259i 0.434372 + 0.315590i
\(478\) −5.05291 + 3.67116i −0.231115 + 0.167915i
\(479\) 7.87132 24.2254i 0.359650 1.10689i −0.593614 0.804750i \(-0.702299\pi\)
0.953264 0.302139i \(-0.0977006\pi\)
\(480\) −17.1618 + 12.4688i −0.783327 + 0.569121i
\(481\) −23.5623 + 17.1190i −1.07435 + 0.780560i
\(482\) −1.73876 + 5.35136i −0.0791984 + 0.243748i
\(483\) 12.7082 9.23305i 0.578243 0.420118i
\(484\) 10.5000 + 7.62870i 0.477273 + 0.346759i
\(485\) 4.83688 + 14.8864i 0.219631 + 0.675956i
\(486\) −5.95130 4.32387i −0.269956 0.196135i
\(487\) −5.74497 + 17.6812i −0.260329 + 0.801211i 0.732403 + 0.680871i \(0.238399\pi\)
−0.992733 + 0.120340i \(0.961601\pi\)
\(488\) 2.02390 6.22894i 0.0916178 0.281971i
\(489\) 8.77973 + 27.0212i 0.397033 + 1.22194i
\(490\) 5.12461 0.231506
\(491\) 9.56564 0.431691 0.215846 0.976427i \(-0.430749\pi\)
0.215846 + 0.976427i \(0.430749\pi\)
\(492\) 9.79633 + 30.1500i 0.441653 + 1.35927i
\(493\) 1.61803 1.17557i 0.0728726 0.0529450i
\(494\) 2.12132 + 1.54123i 0.0954427 + 0.0693432i
\(495\) 21.2132 0.953463
\(496\) 0 0
\(497\) −7.47214 −0.335171
\(498\) −2.23607 1.62460i −0.100201 0.0728000i
\(499\) 14.8736 10.8063i 0.665834 0.483756i −0.202794 0.979221i \(-0.565002\pi\)
0.868628 + 0.495465i \(0.165002\pi\)
\(500\) −6.40576 19.7149i −0.286475 0.881678i
\(501\) −16.9443 −0.757014
\(502\) 9.07417 0.405000
\(503\) 0.892609 + 2.74717i 0.0397995 + 0.122490i 0.968982 0.247130i \(-0.0794876\pi\)
−0.929183 + 0.369621i \(0.879488\pi\)
\(504\) 1.01722 3.13068i 0.0453106 0.139452i
\(505\) 1.54508 4.75528i 0.0687554 0.211607i
\(506\) −9.00000 6.53888i −0.400099 0.290689i
\(507\) −24.1297 74.2637i −1.07164 3.29817i
\(508\) −14.2302 10.3389i −0.631365 0.458714i
\(509\) −3.86938 + 2.81127i −0.171507 + 0.124607i −0.670228 0.742156i \(-0.733804\pi\)
0.498720 + 0.866763i \(0.333804\pi\)
\(510\) −0.326238 + 1.00406i −0.0144461 + 0.0444604i
\(511\) −3.43237 + 2.49376i −0.151839 + 0.110318i
\(512\) −18.0451 + 13.1105i −0.797488 + 0.579409i
\(513\) 0.540182 1.66251i 0.0238496 0.0734015i
\(514\) −7.39919 + 5.37582i −0.326364 + 0.237117i
\(515\) −4.89919 3.55947i −0.215884 0.156849i
\(516\) 0.270510 + 0.832544i 0.0119085 + 0.0366507i
\(517\) 12.7279 + 9.24738i 0.559773 + 0.406699i
\(518\) 0.500776 1.54123i 0.0220028 0.0677177i
\(519\) −12.7279 + 39.1725i −0.558694 + 1.71948i
\(520\) −6.98295 21.4913i −0.306223 0.942457i
\(521\) 13.4164 0.587784 0.293892 0.955839i \(-0.405049\pi\)
0.293892 + 0.955839i \(0.405049\pi\)
\(522\) 3.16228 0.138409
\(523\) −8.98606 27.6562i −0.392933 1.20932i −0.930560 0.366140i \(-0.880679\pi\)
0.537627 0.843183i \(-0.319321\pi\)
\(524\) −29.1246 + 21.1603i −1.27231 + 0.924391i
\(525\) 0 0
\(526\) −1.03165 −0.0449823
\(527\) 0 0
\(528\) 30.5410 1.32913
\(529\) −19.5172 14.1801i −0.848575 0.616526i
\(530\) −3.62365 + 2.63273i −0.157401 + 0.114359i
\(531\) −4.10739 12.6412i −0.178246 0.548583i
\(532\) 1.85410 0.0803855
\(533\) −51.2942 −2.22180
\(534\) −1.58359 4.87380i −0.0685287 0.210910i
\(535\) 5.16312 15.8904i 0.223221 0.687004i
\(536\) −2.72949 + 8.40051i −0.117896 + 0.362847i
\(537\) −30.4164 22.0988i −1.31256 0.953634i
\(538\) −1.74806 5.37999i −0.0753644 0.231948i
\(539\) −20.5942 14.9626i −0.887055 0.644484i
\(540\) −5.86319 + 4.25985i −0.252311 + 0.183315i
\(541\) −8.60081 + 26.4706i −0.369778 + 1.13806i 0.577157 + 0.816633i \(0.304162\pi\)
−0.946935 + 0.321426i \(0.895838\pi\)
\(542\) −8.67656 + 6.30389i −0.372690 + 0.270775i
\(543\) −33.6525 + 24.4500i −1.44417 + 1.04925i
\(544\) −0.692055 + 2.12993i −0.0296716 + 0.0913199i
\(545\) −26.6074 + 19.3314i −1.13974 + 0.828066i
\(546\) 4.85410 + 3.52671i 0.207736 + 0.150929i
\(547\) −7.54508 23.2214i −0.322605 0.992875i −0.972510 0.232860i \(-0.925192\pi\)
0.649906 0.760015i \(-0.274808\pi\)
\(548\) −10.2971 7.48128i −0.439871 0.319585i
\(549\) −3.07416 + 9.46130i −0.131202 + 0.403799i
\(550\) 0 0
\(551\) 1.14412 + 3.52125i 0.0487413 + 0.150010i
\(552\) −23.1246 −0.984249
\(553\) −11.1074 −0.472334
\(554\) −2.31260 7.11745i −0.0982529 0.302391i
\(555\) 17.5623 12.7598i 0.745478 0.541622i
\(556\) −1.50233 1.09150i −0.0637129 0.0462901i
\(557\) 23.2951 0.987046 0.493523 0.869733i \(-0.335709\pi\)
0.493523 + 0.869733i \(0.335709\pi\)
\(558\) 0 0
\(559\) −1.41641 −0.0599077
\(560\) −5.69098 4.13474i −0.240488 0.174725i
\(561\) 4.24264 3.08246i 0.179124 0.130142i
\(562\) −3.70163 11.3924i −0.156144 0.480561i
\(563\) 14.2361 0.599979 0.299989 0.953943i \(-0.403017\pi\)
0.299989 + 0.953943i \(0.403017\pi\)
\(564\) 15.7326 0.662461
\(565\) 9.83688 + 30.2748i 0.413841 + 1.27367i
\(566\) 2.83282 8.71851i 0.119072 0.366466i
\(567\) 3.30902 10.1841i 0.138966 0.427692i
\(568\) 8.89919 + 6.46564i 0.373402 + 0.271292i
\(569\) 9.48683 + 29.1975i 0.397709 + 1.22402i 0.926832 + 0.375477i \(0.122521\pi\)
−0.529123 + 0.848545i \(0.677479\pi\)
\(570\) −1.58114 1.14876i −0.0662266 0.0481165i
\(571\) 5.55369 4.03499i 0.232415 0.168859i −0.465483 0.885057i \(-0.654119\pi\)
0.697897 + 0.716198i \(0.254119\pi\)
\(572\) −16.6869 + 51.3571i −0.697715 + 2.14735i
\(573\) 26.3542 19.1475i 1.10096 0.799897i
\(574\) 2.30902 1.67760i 0.0963765 0.0700216i
\(575\) 0 0
\(576\) 8.51722 6.18812i 0.354884 0.257838i
\(577\) 24.2705 + 17.6336i 1.01039 + 0.734095i 0.964292 0.264842i \(-0.0853198\pi\)
0.0461028 + 0.998937i \(0.485320\pi\)
\(578\) −1.97214 6.06961i −0.0820300 0.252463i
\(579\) −13.4988 9.80744i −0.560991 0.407583i
\(580\) 4.74342 14.5987i 0.196960 0.606179i
\(581\) 0.977198 3.00750i 0.0405410 0.124772i
\(582\) 1.89064 + 5.81878i 0.0783694 + 0.241196i
\(583\) 22.2492 0.921469
\(584\) 6.24574 0.258451
\(585\) 10.6066 + 32.6438i 0.438529 + 1.34965i
\(586\) 4.85410 3.52671i 0.200521 0.145687i
\(587\) 33.3221 + 24.2099i 1.37535 + 0.999251i 0.997298 + 0.0734679i \(0.0234066\pi\)
0.378054 + 0.925784i \(0.376593\pi\)
\(588\) −25.4558 −1.04978
\(589\) 0 0
\(590\) 5.07701 0.209017
\(591\) 13.7082 + 9.95959i 0.563880 + 0.409683i
\(592\) 10.7979 7.84512i 0.443790 0.322432i
\(593\) −5.30902 16.3395i −0.218015 0.670982i −0.998926 0.0463389i \(-0.985245\pi\)
0.780911 0.624643i \(-0.214755\pi\)
\(594\) −2.83282 −0.116232
\(595\) −1.20788 −0.0495184
\(596\) −7.68692 23.6579i −0.314868 0.969065i
\(597\) −10.4164 + 32.0584i −0.426315 + 1.31206i
\(598\) 5.56231 17.1190i 0.227460 0.700049i
\(599\) −19.3713 14.0741i −0.791491 0.575052i 0.116915 0.993142i \(-0.462700\pi\)
−0.908406 + 0.418090i \(0.862700\pi\)
\(600\) 0 0
\(601\) 7.03166 + 5.10880i 0.286827 + 0.208392i 0.721890 0.692008i \(-0.243274\pi\)
−0.435062 + 0.900400i \(0.643274\pi\)
\(602\) 0.0637598 0.0463242i 0.00259865 0.00188803i
\(603\) 4.14590 12.7598i 0.168834 0.519618i
\(604\) −4.55214 + 3.30732i −0.185224 + 0.134573i
\(605\) 12.6631 9.20029i 0.514829 0.374045i
\(606\) 0.603941 1.85874i 0.0245334 0.0755062i
\(607\) 20.3262 14.7679i 0.825017 0.599410i −0.0931285 0.995654i \(-0.529687\pi\)
0.918145 + 0.396244i \(0.129687\pi\)
\(608\) −3.35410 2.43690i −0.136027 0.0988293i
\(609\) 2.61803 + 8.05748i 0.106088 + 0.326506i
\(610\) −3.07416 2.23351i −0.124469 0.0904322i
\(611\) −7.86629 + 24.2099i −0.318236 + 0.979430i
\(612\) 0.692055 2.12993i 0.0279747 0.0860972i
\(613\) 11.5444 + 35.5300i 0.466274 + 1.43504i 0.857374 + 0.514695i \(0.172095\pi\)
−0.391100 + 0.920348i \(0.627905\pi\)
\(614\) −6.15905 −0.248559
\(615\) 38.2325 1.54168
\(616\) −1.93004 5.94006i −0.0777636 0.239332i
\(617\) 38.1246 27.6992i 1.53484 1.11513i 0.581368 0.813641i \(-0.302518\pi\)
0.953471 0.301485i \(-0.0974824\pi\)
\(618\) −1.91499 1.39132i −0.0770322 0.0559671i
\(619\) 21.5958 0.868007 0.434003 0.900911i \(-0.357101\pi\)
0.434003 + 0.900911i \(0.357101\pi\)
\(620\) 0 0
\(621\) −12.0000 −0.481543
\(622\) −5.10739 3.71074i −0.204788 0.148787i
\(623\) 4.74342 3.44629i 0.190041 0.138073i
\(624\) 15.2705 + 46.9978i 0.611310 + 1.88142i
\(625\) −25.0000 −1.00000
\(626\) 8.02391 0.320700
\(627\) 3.00000 + 9.23305i 0.119808 + 0.368733i
\(628\) 2.69756 8.30224i 0.107644 0.331295i
\(629\) 0.708204 2.17963i 0.0282379 0.0869074i
\(630\) −1.54508 1.12257i −0.0615577 0.0447243i
\(631\) 1.43857 + 4.42746i 0.0572685 + 0.176254i 0.975599 0.219560i \(-0.0704623\pi\)
−0.918330 + 0.395815i \(0.870462\pi\)
\(632\) 13.2287 + 9.61121i 0.526209 + 0.382313i
\(633\) −9.25615 + 6.72499i −0.367899 + 0.267294i
\(634\) 2.56888 7.90621i 0.102023 0.313996i
\(635\) −17.1618 + 12.4688i −0.681047 + 0.494810i
\(636\) 18.0000 13.0778i 0.713746 0.518567i
\(637\) 12.7279 39.1725i 0.504299 1.55207i
\(638\) 4.85410 3.52671i 0.192176 0.139624i
\(639\) −13.5172 9.82084i −0.534733 0.388506i
\(640\) 6.97214 + 21.4580i 0.275598 + 0.848203i
\(641\) −6.86474 4.98752i −0.271141 0.196995i 0.443903 0.896075i \(-0.353593\pi\)
−0.715044 + 0.699079i \(0.753593\pi\)
\(642\) 2.01815 6.21124i 0.0796502 0.245138i
\(643\) 7.30175 22.4725i 0.287953 0.886228i −0.697545 0.716541i \(-0.745724\pi\)
0.985498 0.169687i \(-0.0542758\pi\)
\(644\) −3.93314 12.1050i −0.154988 0.477003i
\(645\) 1.05573 0.0415693
\(646\) −0.206331 −0.00811798
\(647\) −5.91189 18.1949i −0.232421 0.715317i −0.997453 0.0713252i \(-0.977277\pi\)
0.765033 0.643992i \(-0.222723\pi\)
\(648\) −12.7533 + 9.26581i −0.500997 + 0.363995i
\(649\) −20.4029 14.8236i −0.800885 0.581877i
\(650\) 0 0
\(651\) 0 0
\(652\) 23.0213 0.901583
\(653\) 5.38197 + 3.91023i 0.210613 + 0.153019i 0.688091 0.725625i \(-0.258449\pi\)
−0.477478 + 0.878644i \(0.658449\pi\)
\(654\) −10.4003 + 7.55624i −0.406683 + 0.295472i
\(655\) 13.4164 + 41.2915i 0.524222 + 1.61339i
\(656\) 23.5066 0.917778
\(657\) −9.48683 −0.370117
\(658\) −0.437694 1.34708i −0.0170631 0.0525148i
\(659\) 14.5795 44.8712i 0.567938 1.74793i −0.0911197 0.995840i \(-0.529045\pi\)
0.659057 0.752093i \(-0.270955\pi\)
\(660\) 12.4377 38.2793i 0.484137 1.49002i
\(661\) 37.0795 + 26.9399i 1.44223 + 1.04784i 0.987571 + 0.157171i \(0.0502375\pi\)
0.454655 + 0.890668i \(0.349763\pi\)
\(662\) 3.02546 + 9.31140i 0.117588 + 0.361898i
\(663\) 6.86474 + 4.98752i 0.266604 + 0.193699i
\(664\) −3.76622 + 2.73632i −0.146158 + 0.106190i
\(665\) 0.690983 2.12663i 0.0267952 0.0824671i
\(666\) 2.93159 2.12993i 0.113597 0.0825330i
\(667\) 20.5623 14.9394i 0.796176 0.578455i
\(668\) −4.24264 + 13.0575i −0.164153 + 0.505210i
\(669\) 40.3607 29.3238i 1.56043 1.13372i
\(670\) 4.14590 + 3.01217i 0.160170 + 0.116370i
\(671\) 5.83282 + 17.9516i 0.225173 + 0.693012i
\(672\) −7.67501 5.57622i −0.296070 0.215107i
\(673\) 2.30330 7.08882i 0.0887856 0.273254i −0.896799 0.442439i \(-0.854113\pi\)
0.985584 + 0.169185i \(0.0541134\pi\)
\(674\) 0.692055 2.12993i 0.0266570 0.0820417i
\(675\) 0 0
\(676\) −63.2705 −2.43348
\(677\) 21.2132 0.815290 0.407645 0.913141i \(-0.366350\pi\)
0.407645 + 0.913141i \(0.366350\pi\)
\(678\) 3.84503 + 11.8338i 0.147668 + 0.454474i
\(679\) −5.66312 + 4.11450i −0.217331 + 0.157900i
\(680\) 1.43857 + 1.04518i 0.0551666 + 0.0400808i
\(681\) −35.9442 −1.37739
\(682\) 0 0
\(683\) −18.8197 −0.720114 −0.360057 0.932930i \(-0.617243\pi\)
−0.360057 + 0.932930i \(0.617243\pi\)
\(684\) 3.35410 + 2.43690i 0.128247 + 0.0931771i
\(685\) −12.4184 + 9.02251i −0.474484 + 0.344733i
\(686\) 1.53444 + 4.72253i 0.0585853 + 0.180307i
\(687\) 9.70820 0.370391
\(688\) 0.649096 0.0247466
\(689\) 11.1246 + 34.2380i 0.423814 + 1.30437i
\(690\) −4.14590 + 12.7598i −0.157832 + 0.485756i
\(691\) −6.66970 + 20.5272i −0.253727 + 0.780892i 0.740351 + 0.672221i \(0.234660\pi\)
−0.994078 + 0.108671i \(0.965340\pi\)
\(692\) 27.0000 + 19.6166i 1.02639 + 0.745713i
\(693\) 2.93159 + 9.02251i 0.111362 + 0.342737i
\(694\) 7.98451 + 5.80108i 0.303088 + 0.220206i
\(695\) −1.81182 + 1.31637i −0.0687264 + 0.0499327i
\(696\) 3.85410 11.8617i 0.146089 0.449617i
\(697\) 3.26544 2.37248i 0.123687 0.0898642i
\(698\) −1.85410 + 1.34708i −0.0701788 + 0.0509879i
\(699\) 3.20168 9.85377i 0.121099 0.372704i
\(700\) 0 0
\(701\) −22.3713 16.2537i −0.844953 0.613894i 0.0787967 0.996891i \(-0.474892\pi\)
−0.923750 + 0.382996i \(0.874892\pi\)
\(702\) −1.41641 4.35926i −0.0534589 0.164529i
\(703\) 3.43237 + 2.49376i 0.129454 + 0.0940540i
\(704\) 6.17268 18.9976i 0.232642 0.715998i
\(705\) 5.86319 18.0450i 0.220820 0.679615i
\(706\) −1.87558 5.77245i −0.0705885 0.217249i
\(707\) 2.23607 0.0840960
\(708\) −25.2194 −0.947803
\(709\) −4.86163 14.9626i −0.182582 0.561931i 0.817316 0.576190i \(-0.195461\pi\)
−0.999898 + 0.0142588i \(0.995461\pi\)
\(710\) 5.16312 3.75123i 0.193768 0.140781i
\(711\) −20.0934 14.5987i −0.753563 0.547495i
\(712\) −8.63141 −0.323476
\(713\) 0 0
\(714\) −0.472136 −0.0176692
\(715\) 52.6869 + 38.2793i 1.97038 + 1.43156i
\(716\) −24.6456 + 17.9061i −0.921048 + 0.669181i
\(717\) −11.5623 35.5851i −0.431802 1.32895i
\(718\) 3.72949 0.139183
\(719\) 9.10427 0.339532 0.169766 0.985484i \(-0.445699\pi\)
0.169766 + 0.985484i \(0.445699\pi\)
\(720\) −4.86068 14.9596i −0.181147 0.557513i
\(721\) 0.836881 2.57565i 0.0311671 0.0959224i
\(722\) −2.12461 + 6.53888i −0.0790699 + 0.243352i
\(723\) −27.2705 19.8132i −1.01420 0.736860i
\(724\) 10.4153 + 32.0551i 0.387082 + 1.19132i
\(725\) 0 0
\(726\) 4.94975 3.59620i 0.183702 0.133468i
\(727\) −1.10739 + 3.40820i −0.0410709 + 0.126403i −0.969490 0.245132i \(-0.921169\pi\)
0.928419 + 0.371535i \(0.121169\pi\)
\(728\) 8.17578 5.94006i 0.303015 0.220153i
\(729\) 9.66312 7.02067i 0.357893 0.260025i
\(730\) 1.11977 3.44629i 0.0414445 0.127553i
\(731\) 0.0901699 0.0655123i 0.00333506 0.00242306i
\(732\) 15.2705 + 11.0947i 0.564414 + 0.410071i
\(733\) 3.83688 + 11.8087i 0.141718 + 0.436164i 0.996574 0.0827009i \(-0.0263546\pi\)
−0.854856 + 0.518865i \(0.826355\pi\)
\(734\) −3.80562 2.76495i −0.140468 0.102056i
\(735\) −9.48683 + 29.1975i −0.349927 + 1.07696i
\(736\) −8.79478 + 27.0675i −0.324180 + 0.997723i
\(737\) −7.86629 24.2099i −0.289758 0.891785i
\(738\) 6.38197 0.234923
\(739\) 25.6622 0.943998 0.471999 0.881599i \(-0.343533\pi\)
0.471999 + 0.881599i \(0.343533\pi\)
\(740\) −5.43547 16.7287i −0.199812 0.614958i
\(741\) −12.7082 + 9.23305i −0.466848 + 0.339185i
\(742\) −1.62054 1.17739i −0.0594921 0.0432235i
\(743\) 1.69936 0.0623433 0.0311717 0.999514i \(-0.490076\pi\)
0.0311717 + 0.999514i \(0.490076\pi\)
\(744\) 0 0
\(745\) −30.0000 −1.09911
\(746\) 7.01722 + 5.09831i 0.256919 + 0.186662i
\(747\) 5.72061 4.15627i 0.209306 0.152070i
\(748\) −1.31308 4.04125i −0.0480110 0.147763i
\(749\) 7.47214 0.273026
\(750\) −9.77198 −0.356822
\(751\) 9.12868 + 28.0952i 0.333110 + 1.02521i 0.967645 + 0.252314i \(0.0811915\pi\)
−0.634535 + 0.772894i \(0.718808\pi\)
\(752\) 3.60488 11.0947i 0.131456 0.404581i
\(753\) −16.7984 + 51.7001i −0.612167 + 1.88406i
\(754\) 7.85410 + 5.70634i 0.286030 + 0.207813i
\(755\) 2.09697 + 6.45380i 0.0763164 + 0.234878i
\(756\) −2.62210 1.90506i −0.0953647 0.0692865i
\(757\) −15.5169 + 11.2737i −0.563973 + 0.409750i −0.832911 0.553407i \(-0.813327\pi\)
0.268938 + 0.963158i \(0.413327\pi\)
\(758\) −2.29180 + 7.05342i −0.0832418 + 0.256192i
\(759\) 53.9163 39.1725i 1.95704 1.42187i
\(760\) −2.66312 + 1.93487i −0.0966015 + 0.0701851i
\(761\) −0.692055 + 2.12993i −0.0250870 + 0.0772098i −0.962816 0.270157i \(-0.912924\pi\)
0.937729 + 0.347367i \(0.112924\pi\)
\(762\) −6.70820 + 4.87380i −0.243013 + 0.176559i
\(763\) −11.8992 8.64527i −0.430779 0.312980i
\(764\) −8.15654 25.1033i −0.295093 0.908204i
\(765\) −2.18508 1.58755i −0.0790017 0.0573981i
\(766\) 2.24884 6.92122i 0.0812539 0.250074i
\(767\) 12.6097 38.8087i 0.455310 1.40130i
\(768\) −3.93314 12.1050i −0.141925 0.436801i
\(769\) 13.8754 0.500359 0.250180 0.968199i \(-0.419510\pi\)
0.250180 + 0.968199i \(0.419510\pi\)
\(770\) −3.62365 −0.130587
\(771\) −16.9312 52.1087i −0.609761 1.87665i
\(772\) −10.9377 + 7.94670i −0.393656 + 0.286008i
\(773\) −21.8415 15.8688i −0.785584 0.570760i 0.121066 0.992645i \(-0.461369\pi\)
−0.906650 + 0.421884i \(0.861369\pi\)
\(774\) 0.176228 0.00633437
\(775\) 0 0
\(776\) 10.3050 0.369926
\(777\) 7.85410 + 5.70634i 0.281764 + 0.204714i
\(778\) 10.4397 7.58487i 0.374281 0.271931i
\(779\) 2.30902 + 7.10642i 0.0827291 + 0.254614i
\(780\) 65.1246 2.33184
\(781\) −31.7016 −1.13437
\(782\) 0.437694 + 1.34708i 0.0156519 + 0.0481716i
\(783\) 2.00000 6.15537i 0.0714742 0.219975i
\(784\) −5.83282 + 17.9516i −0.208315 + 0.641127i
\(785\) −8.51722 6.18812i −0.303993 0.220864i
\(786\) 5.24419 + 16.1400i 0.187054 + 0.575693i
\(787\) −7.36551 5.35136i −0.262552 0.190755i 0.448719 0.893673i \(-0.351880\pi\)
−0.711271 + 0.702917i \(0.751880\pi\)
\(788\) 11.1074 8.06998i 0.395684 0.287481i
\(789\) 1.90983 5.87785i 0.0679918 0.209257i
\(790\) 7.67501 5.57622i 0.273065 0.198393i
\(791\) −11.5172 + 8.36775i −0.409505 + 0.297523i
\(792\) 4.31570 13.2824i 0.153352 0.471968i
\(793\) −24.7082 + 17.9516i −0.877414 + 0.637479i
\(794\) −0.399187 0.290026i −0.0141666 0.0102926i
\(795\) −8.29180 25.5195i −0.294080 0.905084i
\(796\) 22.0965 + 16.0541i 0.783191 + 0.569022i
\(797\) −1.62054 + 4.98752i −0.0574026 + 0.176667i −0.975647 0.219348i \(-0.929607\pi\)
0.918244 + 0.396015i \(0.129607\pi\)
\(798\) 0.270091 0.831254i 0.00956111 0.0294261i
\(799\) −0.618993 1.90506i −0.0218984 0.0673963i
\(800\) 0 0
\(801\) 13.1105 0.463236
\(802\) 0.437016 + 1.34500i 0.0154316 + 0.0474935i
\(803\) −14.5623 + 10.5801i −0.513893 + 0.373365i
\(804\) −20.5942 14.9626i −0.726302 0.527689i
\(805\) −15.3500 −0.541017
\(806\) 0 0
\(807\) 33.8885 1.19293
\(808\) −2.66312 1.93487i −0.0936882 0.0680685i
\(809\) −17.8446 + 12.9649i −0.627383 + 0.455820i −0.855492 0.517815i \(-0.826745\pi\)
0.228110 + 0.973635i \(0.426745\pi\)
\(810\) 2.82624 + 8.69827i 0.0993039 + 0.305626i
\(811\) −43.4164 −1.52456 −0.762278 0.647250i \(-0.775919\pi\)
−0.762278 + 0.647250i \(0.775919\pi\)
\(812\) 6.86474 0.240905
\(813\) −19.8541 61.1046i −0.696314 2.14303i
\(814\) 2.12461 6.53888i 0.0744676 0.229188i
\(815\) 8.57953 26.4051i 0.300528 0.924929i
\(816\) −3.14590 2.28563i −0.110128 0.0800130i
\(817\) 0.0637598 + 0.196232i 0.00223067 + 0.00686530i
\(818\) −5.36241 3.89602i −0.187492 0.136221i
\(819\) −12.4184 + 9.02251i −0.433935 + 0.315272i
\(820\) 9.57295 29.4625i 0.334302 1.02888i
\(821\) 11.6082 8.43382i 0.405127 0.294342i −0.366499 0.930419i \(-0.619444\pi\)
0.771626 + 0.636076i \(0.219444\pi\)
\(822\) −4.85410 + 3.52671i −0.169306 + 0.123008i
\(823\) −4.61590 + 14.2063i −0.160900 + 0.495199i −0.998711 0.0507613i \(-0.983835\pi\)
0.837811 + 0.545961i \(0.183835\pi\)
\(824\) −3.22542 + 2.34341i −0.112363 + 0.0816365i
\(825\) 0 0
\(826\) 0.701626 + 2.15938i 0.0244127 + 0.0751345i
\(827\) 38.8758 + 28.2449i 1.35184 + 0.982173i 0.998917 + 0.0465220i \(0.0148138\pi\)
0.352927 + 0.935651i \(0.385186\pi\)
\(828\) 8.79478 27.0675i 0.305640 0.940662i
\(829\) 1.80252 5.54759i 0.0626042 0.192676i −0.914863 0.403765i \(-0.867701\pi\)
0.977467 + 0.211090i \(0.0677012\pi\)
\(830\) 0.834626 + 2.56872i 0.0289703 + 0.0891614i
\(831\) 44.8328 1.55523
\(832\) 32.3206 1.12051
\(833\) 1.00155 + 3.08246i 0.0347017 + 0.106801i
\(834\) −0.708204 + 0.514540i −0.0245231 + 0.0178171i
\(835\) 13.3956 + 9.73249i 0.463575 + 0.336807i
\(836\) 7.86629 0.272061
\(837\) 0 0
\(838\) −7.10333 −0.245380
\(839\) −6.00000 4.35926i −0.207143 0.150498i 0.479377 0.877609i \(-0.340863\pi\)
−0.686520 + 0.727111i \(0.740863\pi\)
\(840\) −6.09387 + 4.42746i −0.210258 + 0.152762i
\(841\) −4.72542 14.5434i −0.162946 0.501495i
\(842\) −0.159054 −0.00548135
\(843\) 71.7609 2.47158
\(844\) 2.86475 + 8.81678i 0.0986086 + 0.303486i
\(845\) −23.5795 + 72.5703i −0.811160 + 2.49649i
\(846\) 0.978714 3.01217i 0.0336489 0.103561i
\(847\) 5.66312 + 4.11450i 0.194587 + 0.141376i
\(848\) −5.09807 15.6902i −0.175068 0.538805i
\(849\) 44.4295 + 32.2799i 1.52482 + 1.10784i
\(850\) 0 0
\(851\) 9.00000 27.6992i 0.308516 0.949515i
\(852\) −25.6471 + 18.6337i −0.878656 + 0.638381i
\(853\) 36.9787 26.8666i 1.26613 0.919895i 0.267086 0.963673i \(-0.413939\pi\)
0.999041 + 0.0437776i \(0.0139393\pi\)
\(854\) 0.525130 1.61618i 0.0179696 0.0553047i
\(855\) 4.04508 2.93893i 0.138339 0.100509i
\(856\) −8.89919 6.46564i −0.304168 0.220991i
\(857\) −1.85410 5.70634i −0.0633349 0.194925i 0.914382 0.404853i \(-0.132677\pi\)
−0.977717 + 0.209928i \(0.932677\pi\)
\(858\) 20.5942 + 14.9626i 0.703075 + 0.510814i
\(859\) 1.12907 3.47492i 0.0385234 0.118563i −0.929945 0.367698i \(-0.880146\pi\)
0.968469 + 0.249135i \(0.0801462\pi\)
\(860\) 0.264342 0.813560i 0.00901397 0.0277422i
\(861\) 5.28360 + 16.2612i 0.180065 + 0.554182i
\(862\) −0.0425725 −0.00145002
\(863\) −35.3252 −1.20249 −0.601243 0.799067i \(-0.705327\pi\)
−0.601243 + 0.799067i \(0.705327\pi\)
\(864\) 2.23954 + 6.89259i 0.0761906 + 0.234491i
\(865\) 32.5623 23.6579i 1.10715 0.804393i
\(866\) 6.67346 + 4.84855i 0.226773 + 0.164760i
\(867\) 38.2325 1.29844
\(868\) 0 0
\(869\) −47.1246 −1.59859
\(870\) −5.85410 4.25325i −0.198473 0.144199i
\(871\) 33.3221 24.2099i 1.12908 0.820323i
\(872\) 6.69098 + 20.5927i 0.226585 + 0.697358i
\(873\) −15.6525 −0.529756
\(874\) −2.62210 −0.0886937
\(875\) −3.45492 10.6331i −0.116797 0.359466i
\(876\) −5.56231 + 17.1190i −0.187933 + 0.578398i
\(877\) −4.72542 + 14.5434i −0.159566 + 0.491094i −0.998595 0.0529928i \(-0.983124\pi\)
0.839029 + 0.544087i \(0.183124\pi\)
\(878\) 7.72542 + 5.61285i 0.260720 + 0.189425i
\(879\) 11.1074 + 34.1850i 0.374643 + 1.15303i
\(880\) −24.1448 17.5422i −0.813921 0.591348i
\(881\) −40.1869 + 29.1975i −1.35393 + 0.983688i −0.355125 + 0.934819i \(0.615562\pi\)
−0.998805 + 0.0488689i \(0.984438\pi\)
\(882\) −1.58359 + 4.87380i −0.0533223 + 0.164109i
\(883\) −27.4589 + 19.9501i −0.924067 + 0.671374i −0.944533 0.328416i \(-0.893485\pi\)
0.0204659 + 0.999791i \(0.493485\pi\)
\(884\) 5.56231 4.04125i 0.187081 0.135922i
\(885\) −9.39872 + 28.9263i −0.315934 + 0.972346i
\(886\) −7.39919 + 5.37582i −0.248581 + 0.180604i
\(887\) 15.6631 + 11.3799i 0.525916 + 0.382100i 0.818828 0.574039i \(-0.194624\pi\)
−0.292912 + 0.956139i \(0.594624\pi\)
\(888\) −4.41641 13.5923i −0.148205 0.456128i
\(889\) −7.67501 5.57622i −0.257412 0.187020i
\(890\) −1.54748 + 4.76266i −0.0518717 + 0.159645i
\(891\) 14.0390 43.2075i 0.470323 1.44751i
\(892\) −12.4915 38.4448i −0.418246 1.28723i
\(893\) 3.70820 0.124090
\(894\) −11.7264 −0.392188
\(895\) 11.3531 + 34.9413i 0.379493 + 1.16796i
\(896\) −8.16312 + 5.93085i −0.272711 + 0.198136i
\(897\) 87.2385 + 63.3825i 2.91281 + 2.11628i
\(898\) 16.1151 0.537769
\(899\) 0 0
\(900\) 0 0
\(901\) −2.29180 1.66509i −0.0763508 0.0554721i
\(902\) 9.79633 7.11745i 0.326182 0.236985i
\(903\) 0.145898 + 0.449028i 0.00485518 + 0.0149427i
\(904\) 20.9574 0.697034
\(905\) 40.6482 1.35119
\(906\) 0.819660 + 2.52265i 0.0272314 + 0.0838096i
\(907\) −17.1631 + 52.8226i −0.569892 + 1.75395i 0.0830564 + 0.996545i \(0.473532\pi\)
−0.652948 + 0.757402i \(0.726468\pi\)
\(908\) −9.00000 + 27.6992i −0.298675 + 0.919229i
\(909\) 4.04508 + 2.93893i 0.134167 + 0.0974780i
\(910\) −1.81182 5.57622i −0.0600614 0.184850i
\(911\) 11.4806 + 8.34117i 0.380370 + 0.276355i 0.761498 0.648167i \(-0.224464\pi\)
−0.381128 + 0.924522i \(0.624464\pi\)
\(912\) 5.82378 4.23122i 0.192845 0.140110i
\(913\) 4.14590 12.7598i 0.137209 0.422286i
\(914\) 3.49613 2.54009i 0.115642 0.0840186i
\(915\) 18.4164 13.3803i 0.608828 0.442339i
\(916\) 2.43082 7.48128i 0.0803164 0.247189i
\(917\) −15.7082 + 11.4127i −0.518731 + 0.376880i
\(918\) 0.291796 + 0.212002i 0.00963071 + 0.00699712i
\(919\) 7.58359 + 23.3399i 0.250160 + 0.769912i 0.994745 + 0.102385i \(0.0326473\pi\)
−0.744585 + 0.667527i \(0.767353\pi\)
\(920\) 18.2816 + 13.2824i 0.602727 + 0.437907i
\(921\) 11.4018 35.0912i 0.375703 1.15629i
\(922\) 4.61590 14.2063i 0.152016 0.467859i
\(923\) −15.8508 48.7837i −0.521735 1.60574i
\(924\) 18.0000 0.592157
\(925\) 0 0
\(926\) −1.78747 5.50127i −0.0587399 0.180783i
\(927\) 4.89919 3.55947i 0.160910 0.116908i
\(928\) −12.4184 9.02251i −0.407655 0.296179i
\(929\) −23.2951 −0.764288 −0.382144 0.924103i \(-0.624814\pi\)
−0.382144 + 0.924103i \(0.624814\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) −6.79180 4.93453i −0.222473 0.161636i
\(933\) 30.5969 22.2299i 1.00170 0.727775i
\(934\) 1.84752 + 5.68609i 0.0604528 + 0.186055i
\(935\) −5.12461 −0.167593
\(936\) 22.5973 0.738616
\(937\) −17.3820 53.4962i −0.567844 1.74764i −0.659346 0.751839i \(-0.729167\pi\)
0.0915021 0.995805i \(-0.470833\pi\)
\(938\) −0.708204 + 2.17963i −0.0231237 + 0.0711674i
\(939\) −14.8541 + 45.7162i −0.484745 + 1.49189i
\(940\) −12.4377 9.03651i −0.405673 0.294739i
\(941\) −15.7082 48.3449i −0.512073 1.57600i −0.788544 0.614978i \(-0.789165\pi\)
0.276471 0.961022i \(-0.410835\pi\)
\(942\) −3.32920 2.41881i −0.108471 0.0788090i
\(943\) 41.4979 30.1500i 1.35136 0.981819i
\(944\) −5.77864 + 17.7848i −0.188079 + 0.578847i
\(945\) −3.16228 + 2.29753i −0.102869 + 0.0747386i
\(946\) 0.270510 0.196537i 0.00879503 0.00638997i
\(947\) −0.692055 + 2.12993i −0.0224888 + 0.0692133i −0.961671 0.274206i \(-0.911585\pi\)
0.939182 + 0.343419i \(0.111585\pi\)
\(948\) −38.1246 + 27.6992i −1.23823 + 0.899627i
\(949\) −23.5623 17.1190i −0.764865 0.555707i
\(950\) 0 0
\(951\) 40.2900 + 29.2724i 1.30649 + 0.949223i
\(952\) −0.245737 + 0.756300i −0.00796437 + 0.0245118i
\(953\) −16.5185 + 50.8387i −0.535087 + 1.64683i 0.208375 + 0.978049i \(0.433182\pi\)
−0.743462 + 0.668778i \(0.766818\pi\)
\(954\) −1.38411 4.25985i −0.0448122 0.137918i
\(955\) −31.8328 −1.03009
\(956\) −30.3175 −0.980537
\(957\) 11.1074 + 34.1850i 0.359051 + 1.10504i
\(958\) −7.87132 + 5.71885i −0.254311 + 0.184768i
\(959\) −5.55369 4.03499i −0.179338 0.130297i
\(960\) −24.0903 −0.777512
\(961\) 0 0
\(962\) 11.1246 0.358672
\(963\) 13.5172 + 9.82084i 0.435586 + 0.316472i
\(964\) −22.0965 + 16.0541i −0.711682 + 0.517067i
\(965\) 5.03851 + 15.5069i 0.162195 + 0.499186i
\(966\) −6.00000 −0.193047
\(967\) 12.9041 0.414969 0.207485 0.978238i \(-0.433472\pi\)
0.207485 + 0.978238i \(0.433472\pi\)
\(968\) −3.18441 9.80059i −0.102351 0.315003i
\(969\) 0.381966 1.17557i 0.0122705 0.0377648i
\(970\) 1.84752 5.68609i 0.0593204 0.182569i
\(971\) −14.6525 10.6456i −0.470220 0.341635i 0.327307 0.944918i \(-0.393859\pi\)
−0.797527 + 0.603283i \(0.793859\pi\)
\(972\) −11.0343 33.9601i −0.353926 1.08927i
\(973\) −0.810272 0.588697i −0.0259761 0.0188728i
\(974\) 5.74497 4.17396i 0.184081 0.133742i
\(975\) 0 0
\(976\) 11.3230 8.22665i 0.362441 0.263329i
\(977\) −34.3713 + 24.9722i −1.09964 + 0.798932i −0.981000 0.194006i \(-0.937852\pi\)
−0.118636 + 0.992938i \(0.537852\pi\)
\(978\) 3.35356 10.3212i 0.107235 0.330035i
\(979\) 20.1246 14.6214i 0.643185 0.467302i
\(980\) 20.1246 + 14.6214i 0.642857 + 0.467063i
\(981\) −10.1631 31.2789i −0.324483 0.998657i
\(982\) −2.95595 2.14762i −0.0943280 0.0685333i
\(983\) 0.928489 2.85760i 0.0296142 0.0911432i −0.935157 0.354234i \(-0.884742\pi\)
0.964771 + 0.263090i \(0.0847418\pi\)
\(984\) 7.77817 23.9388i 0.247959 0.763140i
\(985\) −5.11667 15.7475i −0.163031 0.501757i
\(986\) −0.763932 −0.0243286
\(987\) 8.48528 0.270089
\(988\) 3.93314 + 12.1050i 0.125130 + 0.385111i
\(989\) 1.14590 0.832544i 0.0364374 0.0264733i
\(990\) −6.55524 4.76266i −0.208339 0.151367i
\(991\) 4.44897 0.141326 0.0706631 0.997500i \(-0.477488\pi\)
0.0706631 + 0.997500i \(0.477488\pi\)
\(992\) 0 0
\(993\) −58.6525 −1.86128
\(994\) 2.30902 + 1.67760i 0.0732376 + 0.0532102i
\(995\) 26.6487 19.3614i 0.844820 0.613798i
\(996\) −4.14590 12.7598i −0.131368 0.404309i
\(997\) 48.6656 1.54126 0.770628 0.637285i \(-0.219943\pi\)
0.770628 + 0.637285i \(0.219943\pi\)
\(998\) −7.02236 −0.222289
\(999\) −2.29180 7.05342i −0.0725092 0.223160i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.d.j.374.2 8
31.2 even 5 961.2.d.h.628.1 8
31.3 odd 30 961.2.g.p.235.2 16
31.4 even 5 961.2.a.h.1.1 4
31.5 even 3 961.2.g.p.732.1 16
31.6 odd 6 961.2.g.p.816.1 16
31.7 even 15 961.2.c.h.439.2 8
31.8 even 5 961.2.d.h.531.1 8
31.9 even 15 961.2.g.i.844.2 16
31.10 even 15 961.2.g.i.448.1 16
31.11 odd 30 961.2.c.h.521.1 8
31.12 odd 30 961.2.g.i.846.1 16
31.13 odd 30 961.2.g.p.338.1 16
31.14 even 15 961.2.g.i.547.1 16
31.15 odd 10 inner 961.2.d.j.388.1 8
31.16 even 5 inner 961.2.d.j.388.2 8
31.17 odd 30 961.2.g.i.547.2 16
31.18 even 15 961.2.g.p.338.2 16
31.19 even 15 961.2.g.i.846.2 16
31.20 even 15 961.2.c.h.521.2 8
31.21 odd 30 961.2.g.i.448.2 16
31.22 odd 30 961.2.g.i.844.1 16
31.23 odd 10 961.2.d.h.531.2 8
31.24 odd 30 961.2.c.h.439.1 8
31.25 even 3 961.2.g.p.816.2 16
31.26 odd 6 961.2.g.p.732.2 16
31.27 odd 10 961.2.a.h.1.2 yes 4
31.28 even 15 961.2.g.p.235.1 16
31.29 odd 10 961.2.d.h.628.2 8
31.30 odd 2 inner 961.2.d.j.374.1 8
93.35 odd 10 8649.2.a.r.1.4 4
93.89 even 10 8649.2.a.r.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
961.2.a.h.1.1 4 31.4 even 5
961.2.a.h.1.2 yes 4 31.27 odd 10
961.2.c.h.439.1 8 31.24 odd 30
961.2.c.h.439.2 8 31.7 even 15
961.2.c.h.521.1 8 31.11 odd 30
961.2.c.h.521.2 8 31.20 even 15
961.2.d.h.531.1 8 31.8 even 5
961.2.d.h.531.2 8 31.23 odd 10
961.2.d.h.628.1 8 31.2 even 5
961.2.d.h.628.2 8 31.29 odd 10
961.2.d.j.374.1 8 31.30 odd 2 inner
961.2.d.j.374.2 8 1.1 even 1 trivial
961.2.d.j.388.1 8 31.15 odd 10 inner
961.2.d.j.388.2 8 31.16 even 5 inner
961.2.g.i.448.1 16 31.10 even 15
961.2.g.i.448.2 16 31.21 odd 30
961.2.g.i.547.1 16 31.14 even 15
961.2.g.i.547.2 16 31.17 odd 30
961.2.g.i.844.1 16 31.22 odd 30
961.2.g.i.844.2 16 31.9 even 15
961.2.g.i.846.1 16 31.12 odd 30
961.2.g.i.846.2 16 31.19 even 15
961.2.g.p.235.1 16 31.28 even 15
961.2.g.p.235.2 16 31.3 odd 30
961.2.g.p.338.1 16 31.13 odd 30
961.2.g.p.338.2 16 31.18 even 15
961.2.g.p.732.1 16 31.5 even 3
961.2.g.p.732.2 16 31.26 odd 6
961.2.g.p.816.1 16 31.6 odd 6
961.2.g.p.816.2 16 31.25 even 3
8649.2.a.r.1.3 4 93.89 even 10
8649.2.a.r.1.4 4 93.35 odd 10