Properties

Label 2-9610-1.1-c1-0-82
Degree $2$
Conductor $9610$
Sign $1$
Analytic cond. $76.7362$
Root an. cond. $8.75992$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.28·3-s + 4-s − 5-s − 2.28·6-s − 1.23·7-s − 8-s + 2.23·9-s + 10-s + 1.95·11-s + 2.28·12-s − 0.874·13-s + 1.23·14-s − 2.28·15-s + 16-s + 6.32·17-s − 2.23·18-s − 2.76·19-s − 20-s − 2.82·21-s − 1.95·22-s − 3.16·23-s − 2.28·24-s + 25-s + 0.874·26-s − 1.74·27-s − 1.23·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.32·3-s + 0.5·4-s − 0.447·5-s − 0.934·6-s − 0.467·7-s − 0.353·8-s + 0.745·9-s + 0.316·10-s + 0.589·11-s + 0.660·12-s − 0.242·13-s + 0.330·14-s − 0.590·15-s + 0.250·16-s + 1.53·17-s − 0.527·18-s − 0.634·19-s − 0.223·20-s − 0.617·21-s − 0.416·22-s − 0.659·23-s − 0.467·24-s + 0.200·25-s + 0.171·26-s − 0.336·27-s − 0.233·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9610\)    =    \(2 \cdot 5 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(76.7362\)
Root analytic conductor: \(8.75992\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9610,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.104624223\)
\(L(\frac12)\) \(\approx\) \(2.104624223\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 + T \)
31 \( 1 \)
good3 \( 1 - 2.28T + 3T^{2} \)
7 \( 1 + 1.23T + 7T^{2} \)
11 \( 1 - 1.95T + 11T^{2} \)
13 \( 1 + 0.874T + 13T^{2} \)
17 \( 1 - 6.32T + 17T^{2} \)
19 \( 1 + 2.76T + 19T^{2} \)
23 \( 1 + 3.16T + 23T^{2} \)
29 \( 1 - 6.86T + 29T^{2} \)
37 \( 1 + 0.874T + 37T^{2} \)
41 \( 1 + 1.23T + 41T^{2} \)
43 \( 1 - 9.69T + 43T^{2} \)
47 \( 1 - 1.70T + 47T^{2} \)
53 \( 1 + 11.1T + 53T^{2} \)
59 \( 1 + 3.70T + 59T^{2} \)
61 \( 1 - 13.1T + 61T^{2} \)
67 \( 1 - 0.763T + 67T^{2} \)
71 \( 1 + 8.94T + 71T^{2} \)
73 \( 1 - 10.2T + 73T^{2} \)
79 \( 1 - 10.2T + 79T^{2} \)
83 \( 1 - 2.95T + 83T^{2} \)
89 \( 1 - 3.57T + 89T^{2} \)
97 \( 1 - 15.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.896895953905557748334841924972, −7.30185439221329288255183511433, −6.51295086038913962638315405964, −5.88312682765922129578987255439, −4.77218630312413135903433983445, −3.84007104320514662068717778288, −3.32485067809093110023620106391, −2.63440649070297370809374326545, −1.78432389997571686180961675643, −0.72021458917826176058807563263, 0.72021458917826176058807563263, 1.78432389997571686180961675643, 2.63440649070297370809374326545, 3.32485067809093110023620106391, 3.84007104320514662068717778288, 4.77218630312413135903433983445, 5.88312682765922129578987255439, 6.51295086038913962638315405964, 7.30185439221329288255183511433, 7.896895953905557748334841924972

Graph of the $Z$-function along the critical line