L(s) = 1 | − 2-s + 2.28·3-s + 4-s − 5-s − 2.28·6-s − 1.23·7-s − 8-s + 2.23·9-s + 10-s + 1.95·11-s + 2.28·12-s − 0.874·13-s + 1.23·14-s − 2.28·15-s + 16-s + 6.32·17-s − 2.23·18-s − 2.76·19-s − 20-s − 2.82·21-s − 1.95·22-s − 3.16·23-s − 2.28·24-s + 25-s + 0.874·26-s − 1.74·27-s − 1.23·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1.32·3-s + 0.5·4-s − 0.447·5-s − 0.934·6-s − 0.467·7-s − 0.353·8-s + 0.745·9-s + 0.316·10-s + 0.589·11-s + 0.660·12-s − 0.242·13-s + 0.330·14-s − 0.590·15-s + 0.250·16-s + 1.53·17-s − 0.527·18-s − 0.634·19-s − 0.223·20-s − 0.617·21-s − 0.416·22-s − 0.659·23-s − 0.467·24-s + 0.200·25-s + 0.171·26-s − 0.336·27-s − 0.233·28-s + ⋯ |
Λ(s)=(=(9610s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9610s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.104624223 |
L(21) |
≈ |
2.104624223 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 5 | 1+T |
| 31 | 1 |
good | 3 | 1−2.28T+3T2 |
| 7 | 1+1.23T+7T2 |
| 11 | 1−1.95T+11T2 |
| 13 | 1+0.874T+13T2 |
| 17 | 1−6.32T+17T2 |
| 19 | 1+2.76T+19T2 |
| 23 | 1+3.16T+23T2 |
| 29 | 1−6.86T+29T2 |
| 37 | 1+0.874T+37T2 |
| 41 | 1+1.23T+41T2 |
| 43 | 1−9.69T+43T2 |
| 47 | 1−1.70T+47T2 |
| 53 | 1+11.1T+53T2 |
| 59 | 1+3.70T+59T2 |
| 61 | 1−13.1T+61T2 |
| 67 | 1−0.763T+67T2 |
| 71 | 1+8.94T+71T2 |
| 73 | 1−10.2T+73T2 |
| 79 | 1−10.2T+79T2 |
| 83 | 1−2.95T+83T2 |
| 89 | 1−3.57T+89T2 |
| 97 | 1−15.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.896895953905557748334841924972, −7.30185439221329288255183511433, −6.51295086038913962638315405964, −5.88312682765922129578987255439, −4.77218630312413135903433983445, −3.84007104320514662068717778288, −3.32485067809093110023620106391, −2.63440649070297370809374326545, −1.78432389997571686180961675643, −0.72021458917826176058807563263,
0.72021458917826176058807563263, 1.78432389997571686180961675643, 2.63440649070297370809374326545, 3.32485067809093110023620106391, 3.84007104320514662068717778288, 4.77218630312413135903433983445, 5.88312682765922129578987255439, 6.51295086038913962638315405964, 7.30185439221329288255183511433, 7.896895953905557748334841924972