Properties

Label 9610.2.a.be
Level $9610$
Weight $2$
Character orbit 9610.a
Self dual yes
Analytic conductor $76.736$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9610,2,Mod(1,9610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9610 = 2 \cdot 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.7362363425\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta_1 q^{3} + q^{4} - q^{5} - \beta_1 q^{6} + ( - \beta_{3} + 1) q^{7} - q^{8} + \beta_{3} q^{9} + q^{10} + (3 \beta_{2} - \beta_1) q^{11} + \beta_1 q^{12} + (\beta_{2} - \beta_1) q^{13}+ \cdots + ( - 5 \beta_{2} + 5 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} - 4 q^{5} + 4 q^{7} - 4 q^{8} + 4 q^{10} - 4 q^{14} + 4 q^{16} - 20 q^{19} - 4 q^{20} + 4 q^{25} + 4 q^{28} - 4 q^{32} - 4 q^{35} + 20 q^{38} - 8 q^{39} + 4 q^{40} + 4 q^{41} - 20 q^{47}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 6x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 4\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} + 4\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.28825
−0.874032
0.874032
2.28825
−1.00000 −2.28825 1.00000 −1.00000 2.28825 −1.23607 −1.00000 2.23607 1.00000
1.2 −1.00000 −0.874032 1.00000 −1.00000 0.874032 3.23607 −1.00000 −2.23607 1.00000
1.3 −1.00000 0.874032 1.00000 −1.00000 −0.874032 3.23607 −1.00000 −2.23607 1.00000
1.4 −1.00000 2.28825 1.00000 −1.00000 −2.28825 −1.23607 −1.00000 2.23607 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(31\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9610.2.a.be 4
31.b odd 2 1 inner 9610.2.a.be 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9610.2.a.be 4 1.a even 1 1 trivial
9610.2.a.be 4 31.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9610))\):

\( T_{3}^{4} - 6T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{7}^{2} - 2T_{7} - 4 \) Copy content Toggle raw display
\( T_{11}^{4} - 30T_{11}^{2} + 100 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 6T^{2} + 4 \) Copy content Toggle raw display
$5$ \( (T + 1)^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 2 T - 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 30T^{2} + 100 \) Copy content Toggle raw display
$13$ \( T^{4} - 6T^{2} + 4 \) Copy content Toggle raw display
$17$ \( (T^{2} - 40)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 10 T + 20)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 10)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 54T^{2} + 324 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 6T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T^{2} - 2 T - 4)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 94T^{2} + 4 \) Copy content Toggle raw display
$47$ \( (T^{2} + 10 T - 20)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - 126T^{2} + 324 \) Copy content Toggle raw display
$59$ \( (T^{2} - 6 T - 36)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} - 254 T^{2} + 13924 \) Copy content Toggle raw display
$67$ \( (T^{2} - 6 T + 4)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 80)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 120T^{2} + 1600 \) Copy content Toggle raw display
$79$ \( T^{4} - 120T^{2} + 1600 \) Copy content Toggle raw display
$83$ \( T^{4} - 174T^{2} + 1444 \) Copy content Toggle raw display
$89$ \( T^{4} - 276T^{2} + 3364 \) Copy content Toggle raw display
$97$ \( (T^{2} - 4 T - 176)^{2} \) Copy content Toggle raw display
show more
show less