Properties

Label 2-9610-1.1-c1-0-35
Degree $2$
Conductor $9610$
Sign $1$
Analytic cond. $76.7362$
Root an. cond. $8.75992$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 4.23·7-s − 8-s − 2·9-s − 10-s + 3·11-s + 12-s + 0.236·13-s + 4.23·14-s + 15-s + 16-s − 1.14·17-s + 2·18-s − 6.47·19-s + 20-s − 4.23·21-s − 3·22-s + 1.14·23-s − 24-s + 25-s − 0.236·26-s − 5·27-s − 4.23·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.447·5-s − 0.408·6-s − 1.60·7-s − 0.353·8-s − 0.666·9-s − 0.316·10-s + 0.904·11-s + 0.288·12-s + 0.0654·13-s + 1.13·14-s + 0.258·15-s + 0.250·16-s − 0.277·17-s + 0.471·18-s − 1.48·19-s + 0.223·20-s − 0.924·21-s − 0.639·22-s + 0.238·23-s − 0.204·24-s + 0.200·25-s − 0.0462·26-s − 0.962·27-s − 0.800·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9610\)    =    \(2 \cdot 5 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(76.7362\)
Root analytic conductor: \(8.75992\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9610,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9931225730\)
\(L(\frac12)\) \(\approx\) \(0.9931225730\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 - T \)
31 \( 1 \)
good3 \( 1 - T + 3T^{2} \)
7 \( 1 + 4.23T + 7T^{2} \)
11 \( 1 - 3T + 11T^{2} \)
13 \( 1 - 0.236T + 13T^{2} \)
17 \( 1 + 1.14T + 17T^{2} \)
19 \( 1 + 6.47T + 19T^{2} \)
23 \( 1 - 1.14T + 23T^{2} \)
29 \( 1 + 3T + 29T^{2} \)
37 \( 1 + 7.94T + 37T^{2} \)
41 \( 1 - 10.8T + 41T^{2} \)
43 \( 1 + 1.23T + 43T^{2} \)
47 \( 1 + 9T + 47T^{2} \)
53 \( 1 + 13.4T + 53T^{2} \)
59 \( 1 - 6T + 59T^{2} \)
61 \( 1 + 1.61T + 61T^{2} \)
67 \( 1 - 14.7T + 67T^{2} \)
71 \( 1 + 1.85T + 71T^{2} \)
73 \( 1 - 12.1T + 73T^{2} \)
79 \( 1 - 4.38T + 79T^{2} \)
83 \( 1 - 0.708T + 83T^{2} \)
89 \( 1 - 12T + 89T^{2} \)
97 \( 1 - 3.23T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.78691393395075565987888678837, −6.92160161182102774993918191113, −6.30642692930879235590851674865, −6.12498319989366140345176256922, −5.00234957259385455347198496386, −3.80177707837177269023637324294, −3.37655978446979920846907163676, −2.49617496702618766571630428197, −1.85651769414923188852093045253, −0.48555217773495951058936874804, 0.48555217773495951058936874804, 1.85651769414923188852093045253, 2.49617496702618766571630428197, 3.37655978446979920846907163676, 3.80177707837177269023637324294, 5.00234957259385455347198496386, 6.12498319989366140345176256922, 6.30642692930879235590851674865, 6.92160161182102774993918191113, 7.78691393395075565987888678837

Graph of the $Z$-function along the critical line