L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s − 4.23·7-s − 8-s − 2·9-s − 10-s + 3·11-s + 12-s + 0.236·13-s + 4.23·14-s + 15-s + 16-s − 1.14·17-s + 2·18-s − 6.47·19-s + 20-s − 4.23·21-s − 3·22-s + 1.14·23-s − 24-s + 25-s − 0.236·26-s − 5·27-s − 4.23·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.447·5-s − 0.408·6-s − 1.60·7-s − 0.353·8-s − 0.666·9-s − 0.316·10-s + 0.904·11-s + 0.288·12-s + 0.0654·13-s + 1.13·14-s + 0.258·15-s + 0.250·16-s − 0.277·17-s + 0.471·18-s − 1.48·19-s + 0.223·20-s − 0.924·21-s − 0.639·22-s + 0.238·23-s − 0.204·24-s + 0.200·25-s − 0.0462·26-s − 0.962·27-s − 0.800·28-s + ⋯ |
Λ(s)=(=(9610s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9610s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9931225730 |
L(21) |
≈ |
0.9931225730 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 5 | 1−T |
| 31 | 1 |
good | 3 | 1−T+3T2 |
| 7 | 1+4.23T+7T2 |
| 11 | 1−3T+11T2 |
| 13 | 1−0.236T+13T2 |
| 17 | 1+1.14T+17T2 |
| 19 | 1+6.47T+19T2 |
| 23 | 1−1.14T+23T2 |
| 29 | 1+3T+29T2 |
| 37 | 1+7.94T+37T2 |
| 41 | 1−10.8T+41T2 |
| 43 | 1+1.23T+43T2 |
| 47 | 1+9T+47T2 |
| 53 | 1+13.4T+53T2 |
| 59 | 1−6T+59T2 |
| 61 | 1+1.61T+61T2 |
| 67 | 1−14.7T+67T2 |
| 71 | 1+1.85T+71T2 |
| 73 | 1−12.1T+73T2 |
| 79 | 1−4.38T+79T2 |
| 83 | 1−0.708T+83T2 |
| 89 | 1−12T+89T2 |
| 97 | 1−3.23T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.78691393395075565987888678837, −6.92160161182102774993918191113, −6.30642692930879235590851674865, −6.12498319989366140345176256922, −5.00234957259385455347198496386, −3.80177707837177269023637324294, −3.37655978446979920846907163676, −2.49617496702618766571630428197, −1.85651769414923188852093045253, −0.48555217773495951058936874804,
0.48555217773495951058936874804, 1.85651769414923188852093045253, 2.49617496702618766571630428197, 3.37655978446979920846907163676, 3.80177707837177269023637324294, 5.00234957259385455347198496386, 6.12498319989366140345176256922, 6.30642692930879235590851674865, 6.92160161182102774993918191113, 7.78691393395075565987888678837