Properties

Label 9610.2.a.k
Level $9610$
Weight $2$
Character orbit 9610.a
Self dual yes
Analytic conductor $76.736$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9610,2,Mod(1,9610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9610 = 2 \cdot 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.7362363425\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 310)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} + ( - 2 \beta - 1) q^{7} - q^{8} - 2 q^{9} - q^{10} + 3 q^{11} + q^{12} + (2 \beta - 3) q^{13} + (2 \beta + 1) q^{14} + q^{15} + q^{16} + (3 \beta - 6) q^{17}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} + 2 q^{5} - 2 q^{6} - 4 q^{7} - 2 q^{8} - 4 q^{9} - 2 q^{10} + 6 q^{11} + 2 q^{12} - 4 q^{13} + 4 q^{14} + 2 q^{15} + 2 q^{16} - 9 q^{17} + 4 q^{18} - 4 q^{19} + 2 q^{20}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−1.00000 1.00000 1.00000 1.00000 −1.00000 −4.23607 −1.00000 −2.00000 −1.00000
1.2 −1.00000 1.00000 1.00000 1.00000 −1.00000 0.236068 −1.00000 −2.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9610.2.a.k 2
31.b odd 2 1 9610.2.a.c 2
31.d even 5 2 310.2.h.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
310.2.h.a 4 31.d even 5 2
9610.2.a.c 2 31.b odd 2 1
9610.2.a.k 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9610))\):

\( T_{3} - 1 \) Copy content Toggle raw display
\( T_{7}^{2} + 4T_{7} - 1 \) Copy content Toggle raw display
\( T_{11} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4T - 1 \) Copy content Toggle raw display
$11$ \( (T - 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 1 \) Copy content Toggle raw display
$17$ \( T^{2} + 9T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} + 4T - 16 \) Copy content Toggle raw display
$23$ \( T^{2} - 9T + 9 \) Copy content Toggle raw display
$29$ \( (T + 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 2T - 79 \) Copy content Toggle raw display
$41$ \( T^{2} - 15T + 45 \) Copy content Toggle raw display
$43$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$47$ \( (T + 9)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 180 \) Copy content Toggle raw display
$59$ \( (T - 6)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$67$ \( T^{2} - 5T - 145 \) Copy content Toggle raw display
$71$ \( T^{2} - 3T - 9 \) Copy content Toggle raw display
$73$ \( T^{2} - 2T - 124 \) Copy content Toggle raw display
$79$ \( T^{2} - 11T + 29 \) Copy content Toggle raw display
$83$ \( T^{2} + 12T - 9 \) Copy content Toggle raw display
$89$ \( (T - 12)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
show more
show less