L(s) = 1 | − 2-s − 0.593·3-s + 4-s + 5-s + 0.593·6-s + 4.51·7-s − 8-s − 2.64·9-s − 10-s + 1.40·11-s − 0.593·12-s − 6.32·13-s − 4.51·14-s − 0.593·15-s + 16-s + 2.05·17-s + 2.64·18-s − 4.46·19-s + 20-s − 2.67·21-s − 1.40·22-s + 5.51·23-s + 0.593·24-s + 25-s + 6.32·26-s + 3.35·27-s + 4.51·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.342·3-s + 0.5·4-s + 0.447·5-s + 0.242·6-s + 1.70·7-s − 0.353·8-s − 0.882·9-s − 0.316·10-s + 0.424·11-s − 0.171·12-s − 1.75·13-s − 1.20·14-s − 0.153·15-s + 0.250·16-s + 0.498·17-s + 0.624·18-s − 1.02·19-s + 0.223·20-s − 0.584·21-s − 0.299·22-s + 1.14·23-s + 0.121·24-s + 0.200·25-s + 1.24·26-s + 0.645·27-s + 0.853·28-s + ⋯ |
Λ(s)=(=(9610s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9610s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.397784443 |
L(21) |
≈ |
1.397784443 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 5 | 1−T |
| 31 | 1 |
good | 3 | 1+0.593T+3T2 |
| 7 | 1−4.51T+7T2 |
| 11 | 1−1.40T+11T2 |
| 13 | 1+6.32T+13T2 |
| 17 | 1−2.05T+17T2 |
| 19 | 1+4.46T+19T2 |
| 23 | 1−5.51T+23T2 |
| 29 | 1+1.32T+29T2 |
| 37 | 1−4.32T+37T2 |
| 41 | 1+12.1T+41T2 |
| 43 | 1−2.46T+43T2 |
| 47 | 1+4.38T+47T2 |
| 53 | 1−4.86T+53T2 |
| 59 | 1+13.1T+59T2 |
| 61 | 1−0.891T+61T2 |
| 67 | 1+1.37T+67T2 |
| 71 | 1−6.43T+71T2 |
| 73 | 1−6.38T+73T2 |
| 79 | 1−6.32T+79T2 |
| 83 | 1−14.3T+83T2 |
| 89 | 1−2.72T+89T2 |
| 97 | 1+5.32T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.88376535277291617629802008542, −7.06342225885206576687340222261, −6.46451923297649950990820286324, −5.52160094273289584505844810303, −5.04447147858500260288430190317, −4.49693896397925506023444034312, −3.18395918701216956804597845260, −2.30169293783595763353235163495, −1.72603852848213864734430902772, −0.63823361404291572569200802238,
0.63823361404291572569200802238, 1.72603852848213864734430902772, 2.30169293783595763353235163495, 3.18395918701216956804597845260, 4.49693896397925506023444034312, 5.04447147858500260288430190317, 5.52160094273289584505844810303, 6.46451923297649950990820286324, 7.06342225885206576687340222261, 7.88376535277291617629802008542