Properties

Label 2-9610-1.1-c1-0-62
Degree $2$
Conductor $9610$
Sign $1$
Analytic cond. $76.7362$
Root an. cond. $8.75992$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 0.593·3-s + 4-s + 5-s + 0.593·6-s + 4.51·7-s − 8-s − 2.64·9-s − 10-s + 1.40·11-s − 0.593·12-s − 6.32·13-s − 4.51·14-s − 0.593·15-s + 16-s + 2.05·17-s + 2.64·18-s − 4.46·19-s + 20-s − 2.67·21-s − 1.40·22-s + 5.51·23-s + 0.593·24-s + 25-s + 6.32·26-s + 3.35·27-s + 4.51·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.342·3-s + 0.5·4-s + 0.447·5-s + 0.242·6-s + 1.70·7-s − 0.353·8-s − 0.882·9-s − 0.316·10-s + 0.424·11-s − 0.171·12-s − 1.75·13-s − 1.20·14-s − 0.153·15-s + 0.250·16-s + 0.498·17-s + 0.624·18-s − 1.02·19-s + 0.223·20-s − 0.584·21-s − 0.299·22-s + 1.14·23-s + 0.121·24-s + 0.200·25-s + 1.24·26-s + 0.645·27-s + 0.853·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9610\)    =    \(2 \cdot 5 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(76.7362\)
Root analytic conductor: \(8.75992\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9610,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.397784443\)
\(L(\frac12)\) \(\approx\) \(1.397784443\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 - T \)
31 \( 1 \)
good3 \( 1 + 0.593T + 3T^{2} \)
7 \( 1 - 4.51T + 7T^{2} \)
11 \( 1 - 1.40T + 11T^{2} \)
13 \( 1 + 6.32T + 13T^{2} \)
17 \( 1 - 2.05T + 17T^{2} \)
19 \( 1 + 4.46T + 19T^{2} \)
23 \( 1 - 5.51T + 23T^{2} \)
29 \( 1 + 1.32T + 29T^{2} \)
37 \( 1 - 4.32T + 37T^{2} \)
41 \( 1 + 12.1T + 41T^{2} \)
43 \( 1 - 2.46T + 43T^{2} \)
47 \( 1 + 4.38T + 47T^{2} \)
53 \( 1 - 4.86T + 53T^{2} \)
59 \( 1 + 13.1T + 59T^{2} \)
61 \( 1 - 0.891T + 61T^{2} \)
67 \( 1 + 1.37T + 67T^{2} \)
71 \( 1 - 6.43T + 71T^{2} \)
73 \( 1 - 6.38T + 73T^{2} \)
79 \( 1 - 6.32T + 79T^{2} \)
83 \( 1 - 14.3T + 83T^{2} \)
89 \( 1 - 2.72T + 89T^{2} \)
97 \( 1 + 5.32T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.88376535277291617629802008542, −7.06342225885206576687340222261, −6.46451923297649950990820286324, −5.52160094273289584505844810303, −5.04447147858500260288430190317, −4.49693896397925506023444034312, −3.18395918701216956804597845260, −2.30169293783595763353235163495, −1.72603852848213864734430902772, −0.63823361404291572569200802238, 0.63823361404291572569200802238, 1.72603852848213864734430902772, 2.30169293783595763353235163495, 3.18395918701216956804597845260, 4.49693896397925506023444034312, 5.04447147858500260288430190317, 5.52160094273289584505844810303, 6.46451923297649950990820286324, 7.06342225885206576687340222261, 7.88376535277291617629802008542

Graph of the $Z$-function along the critical line