Properties

Label 9610.2.a.t
Level $9610$
Weight $2$
Character orbit 9610.a
Self dual yes
Analytic conductor $76.736$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9610,2,Mod(1,9610)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9610, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9610.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9610 = 2 \cdot 5 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9610.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.7362363425\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 310)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - \beta_{2} q^{3} + q^{4} + q^{5} + \beta_{2} q^{6} + (\beta_{2} + 2 \beta_1 - 1) q^{7} - q^{8} + ( - 2 \beta_{2} - \beta_1 + 1) q^{9} - q^{10} + ( - \beta_{2} + 2) q^{11} - \beta_{2} q^{12}+ \cdots + ( - 9 \beta_{2} - 3 \beta_1 + 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + q^{3} + 3 q^{4} + 3 q^{5} - q^{6} - 2 q^{7} - 3 q^{8} + 4 q^{9} - 3 q^{10} + 7 q^{11} + q^{12} - 9 q^{13} + 2 q^{14} + q^{15} + 3 q^{16} - 3 q^{17} - 4 q^{18} - 7 q^{19} + 3 q^{20} - 10 q^{21}+ \cdots + 33 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.69963
2.46050
0.239123
−1.00000 −1.58836 1.00000 1.00000 1.58836 −2.81089 −1.00000 −0.477100 −1.00000
1.2 −1.00000 −0.593579 1.00000 1.00000 0.593579 4.51459 −1.00000 −2.64766 −1.00000
1.3 −1.00000 3.18194 1.00000 1.00000 −3.18194 −3.70370 −1.00000 7.12476 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9610.2.a.t 3
31.b odd 2 1 9610.2.a.r 3
31.c even 3 2 310.2.e.a 6
155.j even 6 2 1550.2.e.n 6
155.o odd 12 4 1550.2.p.j 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
310.2.e.a 6 31.c even 3 2
1550.2.e.n 6 155.j even 6 2
1550.2.p.j 12 155.o odd 12 4
9610.2.a.r 3 31.b odd 2 1
9610.2.a.t 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9610))\):

\( T_{3}^{3} - T_{3}^{2} - 6T_{3} - 3 \) Copy content Toggle raw display
\( T_{7}^{3} + 2T_{7}^{2} - 19T_{7} - 47 \) Copy content Toggle raw display
\( T_{11}^{3} - 7T_{11}^{2} + 10T_{11} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - T^{2} - 6T - 3 \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 2 T^{2} + \cdots - 47 \) Copy content Toggle raw display
$11$ \( T^{3} - 7 T^{2} + \cdots - 3 \) Copy content Toggle raw display
$13$ \( T^{3} + 9T^{2} - 107 \) Copy content Toggle raw display
$17$ \( T^{3} + 3 T^{2} + \cdots - 9 \) Copy content Toggle raw display
$19$ \( T^{3} + 7 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$23$ \( T^{3} - T^{2} + \cdots - 27 \) Copy content Toggle raw display
$29$ \( T^{3} + 2 T^{2} + \cdots - 87 \) Copy content Toggle raw display
$31$ \( T^{3} \) Copy content Toggle raw display
$37$ \( T^{3} - 3 T^{2} + \cdots + 79 \) Copy content Toggle raw display
$41$ \( T^{3} + 9 T^{2} + \cdots - 189 \) Copy content Toggle raw display
$43$ \( T^{3} - T^{2} - 4T + 1 \) Copy content Toggle raw display
$47$ \( T^{3} - 6 T^{2} + \cdots + 81 \) Copy content Toggle raw display
$53$ \( T^{3} - 11 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$59$ \( T^{3} + 4 T^{2} + \cdots - 609 \) Copy content Toggle raw display
$61$ \( T^{3} - 21 T^{2} + \cdots - 83 \) Copy content Toggle raw display
$67$ \( T^{3} - 7 T^{2} + \cdots - 101 \) Copy content Toggle raw display
$71$ \( T^{3} + 9 T^{2} + \cdots - 369 \) Copy content Toggle raw display
$73$ \( T^{3} - 39T - 11 \) Copy content Toggle raw display
$79$ \( T^{3} - 17 T^{2} + \cdots + 237 \) Copy content Toggle raw display
$83$ \( T^{3} - 11 T^{2} + \cdots + 297 \) Copy content Toggle raw display
$89$ \( T^{3} - 9 T^{2} + \cdots + 63 \) Copy content Toggle raw display
$97$ \( T^{3} + 14 T^{2} + \cdots - 251 \) Copy content Toggle raw display
show more
show less