L(s) = 1 | + 2·3-s − 2·5-s + 3·9-s − 4·15-s − 8·23-s + 3·25-s + 2·27-s − 2·31-s − 2·37-s − 6·45-s − 2·59-s + 8·67-s − 16·69-s + 2·71-s + 6·75-s + 81-s − 8·89-s − 4·93-s + 2·97-s − 4·111-s − 2·113-s + 16·115-s − 2·125-s + 127-s + 131-s − 4·135-s + 137-s + ⋯ |
L(s) = 1 | + 2·3-s − 2·5-s + 3·9-s − 4·15-s − 8·23-s + 3·25-s + 2·27-s − 2·31-s − 2·37-s − 6·45-s − 2·59-s + 8·67-s − 16·69-s + 2·71-s + 6·75-s + 81-s − 8·89-s − 4·93-s + 2·97-s − 4·111-s − 2·113-s + 16·115-s − 2·125-s + 127-s + 131-s − 4·135-s + 137-s + ⋯ |
Λ(s)=(=((224⋅1116)s/2ΓC(s)8L(s)Λ(1−s)
Λ(s)=(=((224⋅1116)s/2ΓC(s)8L(s)Λ(1−s)
Particular Values
L(21) |
≈ |
0.3586720961 |
L(21) |
≈ |
0.3586720961 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | (1−T+T3−T4+T5−T7+T8)2 |
| 5 | (1+T−T3−T4−T5+T7+T8)2 |
| 7 | 1−T4+T8−T12+T16 |
| 13 | (1−T+T2−T3+T4)2(1+T+T2+T3+T4)2 |
| 17 | 1−T4+T8−T12+T16 |
| 19 | (1−T+T2−T3+T4)2(1+T+T2+T3+T4)2 |
| 23 | (1+T+T2)8 |
| 29 | (1−T+T2−T3+T4)2(1+T+T2+T3+T4)2 |
| 31 | (1+T−T3−T4−T5+T7+T8)2 |
| 37 | (1+T−T3−T4−T5+T7+T8)2 |
| 41 | (1−T+T2−T3+T4)2(1+T+T2+T3+T4)2 |
| 43 | (1+T4)4 |
| 47 | (1−T2+T4−T6+T8)2 |
| 53 | (1−T2+T4−T6+T8)2 |
| 59 | (1+T−T3−T4−T5+T7+T8)2 |
| 61 | (1−T+T2−T3+T4)2(1+T+T2+T3+T4)2 |
| 67 | (1−T+T2)8 |
| 71 | (1−T+T3−T4+T5−T7+T8)2 |
| 73 | (1−T+T2−T3+T4)2(1+T+T2+T3+T4)2 |
| 79 | 1−T4+T8−T12+T16 |
| 83 | 1−T4+T8−T12+T16 |
| 89 | (1+T+T2)8 |
| 97 | (1−T+T3−T4+T5−T7+T8)2 |
show more | |
show less | |
L(s)=p∏ j=1∏16(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.32801509692024875467776243308, −4.21668534274142585456052731911, −4.13712600598296971717671369452, −4.13077820116991630063198439689, −3.84433360353964124388669971458, −3.80840099383446542553098060016, −3.78567196601666207751237357000, −3.61729960179301366850380031045, −3.58418886820362785195632855123, −3.57700461717680160225671419087, −3.56303110613607760298212309982, −3.06333174787931476590933791131, −2.79575549184256168646708456511, −2.77923755223142338495361035367, −2.59608908758388173208369220750, −2.57990533760632707977610532407, −2.21110414080452641908912603621, −2.07539870427375014707055299856, −1.95909544567123710920095841052, −1.80045032489689858169181402559, −1.79232013696017646061738422107, −1.72894665450767901338040088902, −1.26294153761128970126630603489, −1.04052006312900831254152696419, −0.34730094615671320267926251175,
0.34730094615671320267926251175, 1.04052006312900831254152696419, 1.26294153761128970126630603489, 1.72894665450767901338040088902, 1.79232013696017646061738422107, 1.80045032489689858169181402559, 1.95909544567123710920095841052, 2.07539870427375014707055299856, 2.21110414080452641908912603621, 2.57990533760632707977610532407, 2.59608908758388173208369220750, 2.77923755223142338495361035367, 2.79575549184256168646708456511, 3.06333174787931476590933791131, 3.56303110613607760298212309982, 3.57700461717680160225671419087, 3.58418886820362785195632855123, 3.61729960179301366850380031045, 3.78567196601666207751237357000, 3.80840099383446542553098060016, 3.84433360353964124388669971458, 4.13077820116991630063198439689, 4.13712600598296971717671369452, 4.21668534274142585456052731911, 4.32801509692024875467776243308
Plot not available for L-functions of degree greater than 10.