Properties

Label 16-968e8-1.1-c0e8-0-0
Degree $16$
Conductor $7.709\times 10^{23}$
Sign $1$
Analytic cond. $0.00296660$
Root an. cond. $0.695050$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·5-s + 3·9-s − 4·15-s − 8·23-s + 3·25-s + 2·27-s − 2·31-s − 2·37-s − 6·45-s − 2·59-s + 8·67-s − 16·69-s + 2·71-s + 6·75-s + 81-s − 8·89-s − 4·93-s + 2·97-s − 4·111-s − 2·113-s + 16·115-s − 2·125-s + 127-s + 131-s − 4·135-s + 137-s + ⋯
L(s)  = 1  + 2·3-s − 2·5-s + 3·9-s − 4·15-s − 8·23-s + 3·25-s + 2·27-s − 2·31-s − 2·37-s − 6·45-s − 2·59-s + 8·67-s − 16·69-s + 2·71-s + 6·75-s + 81-s − 8·89-s − 4·93-s + 2·97-s − 4·111-s − 2·113-s + 16·115-s − 2·125-s + 127-s + 131-s − 4·135-s + 137-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 11^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 11^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{24} \cdot 11^{16}\)
Sign: $1$
Analytic conductor: \(0.00296660\)
Root analytic conductor: \(0.695050\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{24} \cdot 11^{16} ,\ ( \ : [0]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3586720961\)
\(L(\frac12)\) \(\approx\) \(0.3586720961\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \)
5 \( ( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} )^{2} \)
7 \( 1 - T^{4} + T^{8} - T^{12} + T^{16} \)
13 \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
17 \( 1 - T^{4} + T^{8} - T^{12} + T^{16} \)
19 \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
23 \( ( 1 + T + T^{2} )^{8} \)
29 \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
31 \( ( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} )^{2} \)
37 \( ( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} )^{2} \)
41 \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
43 \( ( 1 + T^{4} )^{4} \)
47 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \)
53 \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \)
59 \( ( 1 + T - T^{3} - T^{4} - T^{5} + T^{7} + T^{8} )^{2} \)
61 \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
67 \( ( 1 - T + T^{2} )^{8} \)
71 \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \)
73 \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
79 \( 1 - T^{4} + T^{8} - T^{12} + T^{16} \)
83 \( 1 - T^{4} + T^{8} - T^{12} + T^{16} \)
89 \( ( 1 + T + T^{2} )^{8} \)
97 \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.32801509692024875467776243308, −4.21668534274142585456052731911, −4.13712600598296971717671369452, −4.13077820116991630063198439689, −3.84433360353964124388669971458, −3.80840099383446542553098060016, −3.78567196601666207751237357000, −3.61729960179301366850380031045, −3.58418886820362785195632855123, −3.57700461717680160225671419087, −3.56303110613607760298212309982, −3.06333174787931476590933791131, −2.79575549184256168646708456511, −2.77923755223142338495361035367, −2.59608908758388173208369220750, −2.57990533760632707977610532407, −2.21110414080452641908912603621, −2.07539870427375014707055299856, −1.95909544567123710920095841052, −1.80045032489689858169181402559, −1.79232013696017646061738422107, −1.72894665450767901338040088902, −1.26294153761128970126630603489, −1.04052006312900831254152696419, −0.34730094615671320267926251175, 0.34730094615671320267926251175, 1.04052006312900831254152696419, 1.26294153761128970126630603489, 1.72894665450767901338040088902, 1.79232013696017646061738422107, 1.80045032489689858169181402559, 1.95909544567123710920095841052, 2.07539870427375014707055299856, 2.21110414080452641908912603621, 2.57990533760632707977610532407, 2.59608908758388173208369220750, 2.77923755223142338495361035367, 2.79575549184256168646708456511, 3.06333174787931476590933791131, 3.56303110613607760298212309982, 3.57700461717680160225671419087, 3.58418886820362785195632855123, 3.61729960179301366850380031045, 3.78567196601666207751237357000, 3.80840099383446542553098060016, 3.84433360353964124388669971458, 4.13077820116991630063198439689, 4.13712600598296971717671369452, 4.21668534274142585456052731911, 4.32801509692024875467776243308

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.