Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [968,1,Mod(161,968)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(968, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 0, 7]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("968.161");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 968.j (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 8.0.64000000.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 4.2.21296.1 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
161.1 |
|
0 | −0.309017 | + | 0.951057i | 0 | −0.809017 | + | 0.587785i | 0 | −1.34500 | + | 0.437016i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||
161.2 | 0 | −0.309017 | + | 0.951057i | 0 | −0.809017 | + | 0.587785i | 0 | 1.34500 | − | 0.437016i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||
233.1 | 0 | 0.809017 | − | 0.587785i | 0 | 0.309017 | + | 0.951057i | 0 | −0.831254 | + | 1.14412i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||
233.2 | 0 | 0.809017 | − | 0.587785i | 0 | 0.309017 | + | 0.951057i | 0 | 0.831254 | − | 1.14412i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||
457.1 | 0 | 0.809017 | + | 0.587785i | 0 | 0.309017 | − | 0.951057i | 0 | −0.831254 | − | 1.14412i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||
457.2 | 0 | 0.809017 | + | 0.587785i | 0 | 0.309017 | − | 0.951057i | 0 | 0.831254 | + | 1.14412i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||
481.1 | 0 | −0.309017 | − | 0.951057i | 0 | −0.809017 | − | 0.587785i | 0 | −1.34500 | − | 0.437016i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||
481.2 | 0 | −0.309017 | − | 0.951057i | 0 | −0.809017 | − | 0.587785i | 0 | 1.34500 | + | 0.437016i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | inner |
11.c | even | 5 | 3 | inner |
11.d | odd | 10 | 3 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 968.1.j.a | 8 | |
4.b | odd | 2 | 1 | 1936.1.n.b | 8 | ||
11.b | odd | 2 | 1 | inner | 968.1.j.a | 8 | |
11.c | even | 5 | 1 | 968.1.h.a | ✓ | 2 | |
11.c | even | 5 | 3 | inner | 968.1.j.a | 8 | |
11.d | odd | 10 | 1 | 968.1.h.a | ✓ | 2 | |
11.d | odd | 10 | 3 | inner | 968.1.j.a | 8 | |
44.c | even | 2 | 1 | 1936.1.n.b | 8 | ||
44.g | even | 10 | 1 | 1936.1.h.a | 2 | ||
44.g | even | 10 | 3 | 1936.1.n.b | 8 | ||
44.h | odd | 10 | 1 | 1936.1.h.a | 2 | ||
44.h | odd | 10 | 3 | 1936.1.n.b | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
968.1.h.a | ✓ | 2 | 11.c | even | 5 | 1 | |
968.1.h.a | ✓ | 2 | 11.d | odd | 10 | 1 | |
968.1.j.a | 8 | 1.a | even | 1 | 1 | trivial | |
968.1.j.a | 8 | 11.b | odd | 2 | 1 | inner | |
968.1.j.a | 8 | 11.c | even | 5 | 3 | inner | |
968.1.j.a | 8 | 11.d | odd | 10 | 3 | inner | |
1936.1.h.a | 2 | 44.g | even | 10 | 1 | ||
1936.1.h.a | 2 | 44.h | odd | 10 | 1 | ||
1936.1.n.b | 8 | 4.b | odd | 2 | 1 | ||
1936.1.n.b | 8 | 44.c | even | 2 | 1 | ||
1936.1.n.b | 8 | 44.g | even | 10 | 3 | ||
1936.1.n.b | 8 | 44.h | odd | 10 | 3 |
Hecke kernels
This newform subspace is the entire newspace .