Properties

Label 968.1.j.a
Level 968968
Weight 11
Character orbit 968.j
Analytic conductor 0.4830.483
Analytic rank 00
Dimension 88
Projective image S4S_{4}
CM/RM no
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,1,Mod(161,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.161");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 968=23112 968 = 2^{3} \cdot 11^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 968.j (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4830949322290.483094932229
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: 8.0.64000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x6+4x48x2+16 x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: S4S_{4}
Projective field: Galois closure of 4.2.21296.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β6+β4β2+1)q3+β4q5β7q7+β2q15+(β7β5+β3β1)q17β5q21q23+β4q27++β6q97+O(q100) q + ( - \beta_{6} + \beta_{4} - \beta_{2} + 1) q^{3} + \beta_{4} q^{5} - \beta_{7} q^{7} + \beta_{2} q^{15} + (\beta_{7} - \beta_{5} + \beta_{3} - \beta_1) q^{17} - \beta_{5} q^{21} - q^{23} + \beta_{4} q^{27}+ \cdots + \beta_{6} q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+2q32q5+2q158q232q272q312q37+2q492q59+8q672q69+2q71+2q818q89+2q93+2q97+O(q100) 8 q + 2 q^{3} - 2 q^{5} + 2 q^{15} - 8 q^{23} - 2 q^{27} - 2 q^{31} - 2 q^{37} + 2 q^{49} - 2 q^{59} + 8 q^{67} - 2 q^{69} + 2 q^{71} + 2 q^{81} - 8 q^{89} + 2 q^{93} + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82x6+4x48x2+16 x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
β4\beta_{4}== (ν4)/4 ( \nu^{4} ) / 4 Copy content Toggle raw display
β5\beta_{5}== (ν5)/4 ( \nu^{5} ) / 4 Copy content Toggle raw display
β6\beta_{6}== (ν6)/8 ( \nu^{6} ) / 8 Copy content Toggle raw display
β7\beta_{7}== (ν7)/8 ( \nu^{7} ) / 8 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display
ν4\nu^{4}== 4β4 4\beta_{4} Copy content Toggle raw display
ν5\nu^{5}== 4β5 4\beta_{5} Copy content Toggle raw display
ν6\nu^{6}== 8β6 8\beta_{6} Copy content Toggle raw display
ν7\nu^{7}== 8β7 8\beta_{7} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/968Z)×\left(\mathbb{Z}/968\mathbb{Z}\right)^\times.

nn 485485 727727 849849
χ(n)\chi(n) 11 11 β2\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
161.1
0.831254 1.14412i
−0.831254 + 1.14412i
−1.34500 0.437016i
1.34500 + 0.437016i
−1.34500 + 0.437016i
1.34500 0.437016i
0.831254 + 1.14412i
−0.831254 1.14412i
0 −0.309017 + 0.951057i 0 −0.809017 + 0.587785i 0 −1.34500 + 0.437016i 0 0 0
161.2 0 −0.309017 + 0.951057i 0 −0.809017 + 0.587785i 0 1.34500 0.437016i 0 0 0
233.1 0 0.809017 0.587785i 0 0.309017 + 0.951057i 0 −0.831254 + 1.14412i 0 0 0
233.2 0 0.809017 0.587785i 0 0.309017 + 0.951057i 0 0.831254 1.14412i 0 0 0
457.1 0 0.809017 + 0.587785i 0 0.309017 0.951057i 0 −0.831254 1.14412i 0 0 0
457.2 0 0.809017 + 0.587785i 0 0.309017 0.951057i 0 0.831254 + 1.14412i 0 0 0
481.1 0 −0.309017 0.951057i 0 −0.809017 0.587785i 0 −1.34500 0.437016i 0 0 0
481.2 0 −0.309017 0.951057i 0 −0.809017 0.587785i 0 1.34500 + 0.437016i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 161.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner
11.c even 5 3 inner
11.d odd 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 968.1.j.a 8
4.b odd 2 1 1936.1.n.b 8
11.b odd 2 1 inner 968.1.j.a 8
11.c even 5 1 968.1.h.a 2
11.c even 5 3 inner 968.1.j.a 8
11.d odd 10 1 968.1.h.a 2
11.d odd 10 3 inner 968.1.j.a 8
44.c even 2 1 1936.1.n.b 8
44.g even 10 1 1936.1.h.a 2
44.g even 10 3 1936.1.n.b 8
44.h odd 10 1 1936.1.h.a 2
44.h odd 10 3 1936.1.n.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
968.1.h.a 2 11.c even 5 1
968.1.h.a 2 11.d odd 10 1
968.1.j.a 8 1.a even 1 1 trivial
968.1.j.a 8 11.b odd 2 1 inner
968.1.j.a 8 11.c even 5 3 inner
968.1.j.a 8 11.d odd 10 3 inner
1936.1.h.a 2 44.g even 10 1
1936.1.h.a 2 44.h odd 10 1
1936.1.n.b 8 4.b odd 2 1
1936.1.n.b 8 44.c even 2 1
1936.1.n.b 8 44.g even 10 3
1936.1.n.b 8 44.h odd 10 3

Hecke kernels

This newform subspace is the entire newspace S1new(968,[χ])S_{1}^{\mathrm{new}}(968, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T4T3+T2++1)2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
55 (T4+T3+T2++1)2 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
77 T82T6++16 T^{8} - 2 T^{6} + \cdots + 16 Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 T82T6++16 T^{8} - 2 T^{6} + \cdots + 16 Copy content Toggle raw display
1919 T8 T^{8} Copy content Toggle raw display
2323 (T+1)8 (T + 1)^{8} Copy content Toggle raw display
2929 T8 T^{8} Copy content Toggle raw display
3131 (T4+T3+T2++1)2 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
3737 (T4+T3+T2++1)2 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
4141 T8 T^{8} Copy content Toggle raw display
4343 (T2+2)4 (T^{2} + 2)^{4} Copy content Toggle raw display
4747 T8 T^{8} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 (T4+T3+T2++1)2 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
6161 T8 T^{8} Copy content Toggle raw display
6767 (T1)8 (T - 1)^{8} Copy content Toggle raw display
7171 (T4T3+T2++1)2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
7373 T8 T^{8} Copy content Toggle raw display
7979 T82T6++16 T^{8} - 2 T^{6} + \cdots + 16 Copy content Toggle raw display
8383 T82T6++16 T^{8} - 2 T^{6} + \cdots + 16 Copy content Toggle raw display
8989 (T+1)8 (T + 1)^{8} Copy content Toggle raw display
9797 (T4T3+T2++1)2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
show more
show less