L(s) = 1 | + (−0.309 + 0.951i)3-s + (−0.809 + 0.587i)5-s + (1.34 − 0.437i)7-s + (−0.309 − 0.951i)15-s + (0.831 + 1.14i)17-s + 1.41i·21-s − 23-s + (−0.809 + 0.587i)27-s + (−0.809 − 0.587i)31-s + (−0.831 + 1.14i)35-s + (0.309 + 0.951i)37-s − 1.41i·43-s + (0.809 − 0.587i)49-s + (−1.34 + 0.437i)51-s + (0.309 + 0.951i)59-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)3-s + (−0.809 + 0.587i)5-s + (1.34 − 0.437i)7-s + (−0.309 − 0.951i)15-s + (0.831 + 1.14i)17-s + 1.41i·21-s − 23-s + (−0.809 + 0.587i)27-s + (−0.809 − 0.587i)31-s + (−0.831 + 1.14i)35-s + (0.309 + 0.951i)37-s − 1.41i·43-s + (0.809 − 0.587i)49-s + (−1.34 + 0.437i)51-s + (0.309 + 0.951i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0560 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0560 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9194672337\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9194672337\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 5 | \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 7 | \( 1 + (-1.34 + 0.437i)T + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.831 - 1.14i)T + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + T + T^{2} \) |
| 29 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.309 - 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + 1.41iT - T^{2} \) |
| 47 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.831 + 1.14i)T + (-0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (0.831 + 1.14i)T + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.44781039295252739501896378935, −9.935796356815212136996426776718, −8.653850844395604142085851973840, −7.82294678613158328617213124504, −7.33957599405351662728484509097, −5.95616984084919423972195366782, −5.02798958301002478672233356594, −4.13077820116991630063198439689, −3.58418886820362785195632855123, −1.79232013696017646061738422107,
1.04052006312900831254152696419, 2.21110414080452641908912603621, 3.84433360353964124388669971458, 4.86275841968163416794270232086, 5.61302499055982326930347013028, 6.76363277597471891071497302005, 7.82702010236782684703440734912, 7.925101541511993234645651953449, 9.009401566965570370341194512573, 9.976122158878763470259100163074