L(s) = 1 | + (−0.309 − 0.951i)3-s + (−0.809 − 0.587i)5-s + (1.34 + 0.437i)7-s + (−0.309 + 0.951i)15-s + (0.831 − 1.14i)17-s − 1.41i·21-s − 23-s + (−0.809 − 0.587i)27-s + (−0.809 + 0.587i)31-s + (−0.831 − 1.14i)35-s + (0.309 − 0.951i)37-s + 1.41i·43-s + (0.809 + 0.587i)49-s + (−1.34 − 0.437i)51-s + (0.309 − 0.951i)59-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)3-s + (−0.809 − 0.587i)5-s + (1.34 + 0.437i)7-s + (−0.309 + 0.951i)15-s + (0.831 − 1.14i)17-s − 1.41i·21-s − 23-s + (−0.809 − 0.587i)27-s + (−0.809 + 0.587i)31-s + (−0.831 − 1.14i)35-s + (0.309 − 0.951i)37-s + 1.41i·43-s + (0.809 + 0.587i)49-s + (−1.34 − 0.437i)51-s + (0.309 − 0.951i)59-s + ⋯ |
Λ(s)=(=(968s/2ΓC(s)L(s)(0.0560+0.998i)Λ(1−s)
Λ(s)=(=(968s/2ΓC(s)L(s)(0.0560+0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
968
= 23⋅112
|
Sign: |
0.0560+0.998i
|
Analytic conductor: |
0.483094 |
Root analytic conductor: |
0.695050 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ968(481,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 968, ( :0), 0.0560+0.998i)
|
Particular Values
L(21) |
≈ |
0.9194672337 |
L(21) |
≈ |
0.9194672337 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 5 | 1+(0.809+0.587i)T+(0.309+0.951i)T2 |
| 7 | 1+(−1.34−0.437i)T+(0.809+0.587i)T2 |
| 13 | 1+(−0.309+0.951i)T2 |
| 17 | 1+(−0.831+1.14i)T+(−0.309−0.951i)T2 |
| 19 | 1+(0.809−0.587i)T2 |
| 23 | 1+T+T2 |
| 29 | 1+(0.809+0.587i)T2 |
| 31 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
| 37 | 1+(−0.309+0.951i)T+(−0.809−0.587i)T2 |
| 41 | 1+(0.809−0.587i)T2 |
| 43 | 1−1.41iT−T2 |
| 47 | 1+(−0.809+0.587i)T2 |
| 53 | 1+(0.309−0.951i)T2 |
| 59 | 1+(−0.309+0.951i)T+(−0.809−0.587i)T2 |
| 61 | 1+(−0.309−0.951i)T2 |
| 67 | 1−T+T2 |
| 71 | 1+(−0.809−0.587i)T+(0.309+0.951i)T2 |
| 73 | 1+(0.809+0.587i)T2 |
| 79 | 1+(−0.831−1.14i)T+(−0.309+0.951i)T2 |
| 83 | 1+(0.831−1.14i)T+(−0.309−0.951i)T2 |
| 89 | 1+T+T2 |
| 97 | 1+(−0.809+0.587i)T+(0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.976122158878763470259100163074, −9.009401566965570370341194512573, −7.925101541511993234645651953449, −7.82702010236782684703440734912, −6.76363277597471891071497302005, −5.61302499055982326930347013028, −4.86275841968163416794270232086, −3.84433360353964124388669971458, −2.21110414080452641908912603621, −1.04052006312900831254152696419,
1.79232013696017646061738422107, 3.58418886820362785195632855123, 4.13077820116991630063198439689, 5.02798958301002478672233356594, 5.95616984084919423972195366782, 7.33957599405351662728484509097, 7.82294678613158328617213124504, 8.653850844395604142085851973840, 9.935796356815212136996426776718, 10.44781039295252739501896378935