Properties

Label 2-968-1.1-c1-0-11
Degree $2$
Conductor $968$
Sign $1$
Analytic cond. $7.72951$
Root an. cond. $2.78020$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s + 4·7-s − 3·9-s + 3·13-s + 3·17-s + 4·19-s − 8·23-s + 4·25-s − 5·29-s − 4·31-s + 12·35-s + 11·37-s + 7·41-s − 12·43-s − 9·45-s − 8·47-s + 9·49-s − 53-s − 4·59-s − 2·61-s − 12·63-s + 9·65-s + 4·67-s + 12·71-s + 10·73-s + 8·79-s + 9·81-s + ⋯
L(s)  = 1  + 1.34·5-s + 1.51·7-s − 9-s + 0.832·13-s + 0.727·17-s + 0.917·19-s − 1.66·23-s + 4/5·25-s − 0.928·29-s − 0.718·31-s + 2.02·35-s + 1.80·37-s + 1.09·41-s − 1.82·43-s − 1.34·45-s − 1.16·47-s + 9/7·49-s − 0.137·53-s − 0.520·59-s − 0.256·61-s − 1.51·63-s + 1.11·65-s + 0.488·67-s + 1.42·71-s + 1.17·73-s + 0.900·79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(968\)    =    \(2^{3} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(7.72951\)
Root analytic conductor: \(2.78020\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 968,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.289811341\)
\(L(\frac12)\) \(\approx\) \(2.289811341\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 + p T^{2} \)
5 \( 1 - 3 T + p T^{2} \)
7 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 11 T + p T^{2} \)
41 \( 1 - 7 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 + 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.871100332584929424091507406903, −9.315729680767934174365366461202, −8.194968820725900543272135034508, −7.83217233414190971770307310117, −6.30681177281106592088147922223, −5.65688575675512458890240062698, −5.05440153409789039731500985582, −3.66665168393547624429364752240, −2.29728473273749431649763829937, −1.40572175942725518657269326631, 1.40572175942725518657269326631, 2.29728473273749431649763829937, 3.66665168393547624429364752240, 5.05440153409789039731500985582, 5.65688575675512458890240062698, 6.30681177281106592088147922223, 7.83217233414190971770307310117, 8.194968820725900543272135034508, 9.315729680767934174365366461202, 9.871100332584929424091507406903

Graph of the $Z$-function along the critical line