Properties

Label 968.2.a.c
Level $968$
Weight $2$
Character orbit 968.a
Self dual yes
Analytic conductor $7.730$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(1,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{5} + 4 q^{7} - 3 q^{9} + 3 q^{13} + 3 q^{17} + 4 q^{19} - 8 q^{23} + 4 q^{25} - 5 q^{29} - 4 q^{31} + 12 q^{35} + 11 q^{37} + 7 q^{41} - 12 q^{43} - 9 q^{45} - 8 q^{47} + 9 q^{49} - q^{53} - 4 q^{59}+ \cdots - 13 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 3.00000 0 4.00000 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 968.2.a.c yes 1
3.b odd 2 1 8712.2.a.c 1
4.b odd 2 1 1936.2.a.f 1
8.b even 2 1 7744.2.a.r 1
8.d odd 2 1 7744.2.a.p 1
11.b odd 2 1 968.2.a.b 1
11.c even 5 4 968.2.i.g 4
11.d odd 10 4 968.2.i.h 4
33.d even 2 1 8712.2.a.b 1
44.c even 2 1 1936.2.a.g 1
88.b odd 2 1 7744.2.a.q 1
88.g even 2 1 7744.2.a.s 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
968.2.a.b 1 11.b odd 2 1
968.2.a.c yes 1 1.a even 1 1 trivial
968.2.i.g 4 11.c even 5 4
968.2.i.h 4 11.d odd 10 4
1936.2.a.f 1 4.b odd 2 1
1936.2.a.g 1 44.c even 2 1
7744.2.a.p 1 8.d odd 2 1
7744.2.a.q 1 88.b odd 2 1
7744.2.a.r 1 8.b even 2 1
7744.2.a.s 1 88.g even 2 1
8712.2.a.b 1 33.d even 2 1
8712.2.a.c 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(968))\):

\( T_{3} \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 3 \) Copy content Toggle raw display
$7$ \( T - 4 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 3 \) Copy content Toggle raw display
$17$ \( T - 3 \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T + 8 \) Copy content Toggle raw display
$29$ \( T + 5 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T - 11 \) Copy content Toggle raw display
$41$ \( T - 7 \) Copy content Toggle raw display
$43$ \( T + 12 \) Copy content Toggle raw display
$47$ \( T + 8 \) Copy content Toggle raw display
$53$ \( T + 1 \) Copy content Toggle raw display
$59$ \( T + 4 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T - 12 \) Copy content Toggle raw display
$73$ \( T - 10 \) Copy content Toggle raw display
$79$ \( T - 8 \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T - 3 \) Copy content Toggle raw display
$97$ \( T + 13 \) Copy content Toggle raw display
show more
show less