L(s) = 1 | + (−0.5 − 1.53i)3-s + (−0.5 − 0.363i)5-s + (−0.5 + 1.53i)7-s + (0.309 − 0.224i)9-s + (−4.73 + 3.44i)13-s + (−0.309 + 0.951i)15-s + (−1.5 − 1.08i)17-s + (−1.5 − 4.61i)19-s + 2.61·21-s − 4·23-s + (−1.42 − 4.39i)25-s + (−4.42 − 3.21i)27-s + (−2.26 + 6.96i)29-s + (−0.881 + 0.640i)31-s + (0.809 − 0.587i)35-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.888i)3-s + (−0.223 − 0.162i)5-s + (−0.188 + 0.581i)7-s + (0.103 − 0.0748i)9-s + (−1.31 + 0.954i)13-s + (−0.0797 + 0.245i)15-s + (−0.363 − 0.264i)17-s + (−0.344 − 1.05i)19-s + 0.571·21-s − 0.834·23-s + (−0.285 − 0.878i)25-s + (−0.851 − 0.619i)27-s + (−0.420 + 1.29i)29-s + (−0.158 + 0.115i)31-s + (0.136 − 0.0993i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.751 - 0.659i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.751 - 0.659i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (0.5 + 1.53i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.363i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.5 - 1.53i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (4.73 - 3.44i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (1.5 + 1.08i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.5 + 4.61i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 4T + 23T^{2} \) |
| 29 | \( 1 + (2.26 - 6.96i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (0.881 - 0.640i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.97 - 9.14i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-2.97 - 9.14i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 1.52T + 43T^{2} \) |
| 47 | \( 1 + (3.26 + 10.0i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.363i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (0.736 - 2.26i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (1.5 + 1.08i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 14.4T + 67T^{2} \) |
| 71 | \( 1 + (-4.11 - 2.99i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.972 + 2.99i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (3.11 - 2.26i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-7.59 - 5.51i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 4.47T + 89T^{2} \) |
| 97 | \( 1 + (-9.97 + 7.24i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.436471095503702999469326868188, −8.682853030771989826920917009880, −7.66607476509033615171833985476, −6.86442228364330377677744071102, −6.35484226158552969547950082870, −5.10456946854903446936287782489, −4.28043760848348117393122192835, −2.74198580180955135330202281828, −1.72904588719877146061539163238, 0,
2.12700484838215989704490420027, 3.62351004592595270252987834504, 4.22700366769249206308877111154, 5.27476836842010460240682721543, 6.06458595302149503602470180379, 7.48979605308290102899774872468, 7.70630925125443753922842939066, 9.115879883425577742263852894553, 9.930242040916593437310535614005