Properties

Label 968.2.i.c.729.1
Level $968$
Weight $2$
Character 968.729
Analytic conductor $7.730$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(9,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.i (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 729.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 968.729
Dual form 968.2.i.c.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 1.53884i) q^{3} +(-0.500000 - 0.363271i) q^{5} +(-0.500000 + 1.53884i) q^{7} +(0.309017 - 0.224514i) q^{9} +(-4.73607 + 3.44095i) q^{13} +(-0.309017 + 0.951057i) q^{15} +(-1.50000 - 1.08981i) q^{17} +(-1.50000 - 4.61653i) q^{19} +2.61803 q^{21} -4.00000 q^{23} +(-1.42705 - 4.39201i) q^{25} +(-4.42705 - 3.21644i) q^{27} +(-2.26393 + 6.96767i) q^{29} +(-0.881966 + 0.640786i) q^{31} +(0.809017 - 0.587785i) q^{35} +(-2.97214 + 9.14729i) q^{37} +(7.66312 + 5.56758i) q^{39} +(2.97214 + 9.14729i) q^{41} -1.52786 q^{43} -0.236068 q^{45} +(-3.26393 - 10.0453i) q^{47} +(3.54508 + 2.57565i) q^{49} +(-0.927051 + 2.85317i) q^{51} +(-0.500000 + 0.363271i) q^{53} +(-6.35410 + 4.61653i) q^{57} +(-0.736068 + 2.26538i) q^{59} +(-1.50000 - 1.08981i) q^{61} +(0.190983 + 0.587785i) q^{63} +3.61803 q^{65} -14.4721 q^{67} +(2.00000 + 6.15537i) q^{69} +(4.11803 + 2.99193i) q^{71} +(0.972136 - 2.99193i) q^{73} +(-6.04508 + 4.39201i) q^{75} +(-3.11803 + 2.26538i) q^{79} +(-2.38197 + 7.33094i) q^{81} +(7.59017 + 5.51458i) q^{83} +(0.354102 + 1.08981i) q^{85} +11.8541 q^{87} -4.47214 q^{89} +(-2.92705 - 9.00854i) q^{91} +(1.42705 + 1.03681i) q^{93} +(-0.927051 + 2.85317i) q^{95} +(9.97214 - 7.24518i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{5} - 2 q^{7} - q^{9} - 10 q^{13} + q^{15} - 6 q^{17} - 6 q^{19} + 6 q^{21} - 16 q^{23} + q^{25} - 11 q^{27} - 18 q^{29} - 8 q^{31} + q^{35} + 6 q^{37} + 15 q^{39} - 6 q^{41} - 24 q^{43}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 1.53884i −0.288675 0.888451i −0.985273 0.170989i \(-0.945304\pi\)
0.696598 0.717462i \(-0.254696\pi\)
\(4\) 0 0
\(5\) −0.500000 0.363271i −0.223607 0.162460i 0.470342 0.882484i \(-0.344131\pi\)
−0.693949 + 0.720024i \(0.744131\pi\)
\(6\) 0 0
\(7\) −0.500000 + 1.53884i −0.188982 + 0.581628i −0.999994 0.00340203i \(-0.998917\pi\)
0.811012 + 0.585030i \(0.198917\pi\)
\(8\) 0 0
\(9\) 0.309017 0.224514i 0.103006 0.0748380i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −4.73607 + 3.44095i −1.31355 + 0.954349i −0.313560 + 0.949568i \(0.601522\pi\)
−0.999989 + 0.00478088i \(0.998478\pi\)
\(14\) 0 0
\(15\) −0.309017 + 0.951057i −0.0797878 + 0.245562i
\(16\) 0 0
\(17\) −1.50000 1.08981i −0.363803 0.264319i 0.390833 0.920461i \(-0.372187\pi\)
−0.754637 + 0.656143i \(0.772187\pi\)
\(18\) 0 0
\(19\) −1.50000 4.61653i −0.344124 1.05910i −0.962051 0.272869i \(-0.912028\pi\)
0.617928 0.786235i \(-0.287972\pi\)
\(20\) 0 0
\(21\) 2.61803 0.571302
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −1.42705 4.39201i −0.285410 0.878402i
\(26\) 0 0
\(27\) −4.42705 3.21644i −0.851986 0.619004i
\(28\) 0 0
\(29\) −2.26393 + 6.96767i −0.420402 + 1.29386i 0.486928 + 0.873442i \(0.338118\pi\)
−0.907329 + 0.420421i \(0.861882\pi\)
\(30\) 0 0
\(31\) −0.881966 + 0.640786i −0.158406 + 0.115089i −0.664165 0.747586i \(-0.731213\pi\)
0.505759 + 0.862675i \(0.331213\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.809017 0.587785i 0.136749 0.0993538i
\(36\) 0 0
\(37\) −2.97214 + 9.14729i −0.488616 + 1.50381i 0.338058 + 0.941125i \(0.390230\pi\)
−0.826674 + 0.562681i \(0.809770\pi\)
\(38\) 0 0
\(39\) 7.66312 + 5.56758i 1.22708 + 0.891527i
\(40\) 0 0
\(41\) 2.97214 + 9.14729i 0.464170 + 1.42857i 0.860024 + 0.510254i \(0.170449\pi\)
−0.395854 + 0.918313i \(0.629551\pi\)
\(42\) 0 0
\(43\) −1.52786 −0.232997 −0.116499 0.993191i \(-0.537167\pi\)
−0.116499 + 0.993191i \(0.537167\pi\)
\(44\) 0 0
\(45\) −0.236068 −0.0351909
\(46\) 0 0
\(47\) −3.26393 10.0453i −0.476093 1.46526i −0.844477 0.535591i \(-0.820089\pi\)
0.368384 0.929674i \(-0.379911\pi\)
\(48\) 0 0
\(49\) 3.54508 + 2.57565i 0.506441 + 0.367951i
\(50\) 0 0
\(51\) −0.927051 + 2.85317i −0.129813 + 0.399524i
\(52\) 0 0
\(53\) −0.500000 + 0.363271i −0.0686803 + 0.0498991i −0.621596 0.783338i \(-0.713515\pi\)
0.552915 + 0.833237i \(0.313515\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −6.35410 + 4.61653i −0.841621 + 0.611474i
\(58\) 0 0
\(59\) −0.736068 + 2.26538i −0.0958279 + 0.294928i −0.987469 0.157816i \(-0.949555\pi\)
0.891641 + 0.452744i \(0.149555\pi\)
\(60\) 0 0
\(61\) −1.50000 1.08981i −0.192055 0.139536i 0.487602 0.873066i \(-0.337872\pi\)
−0.679658 + 0.733530i \(0.737872\pi\)
\(62\) 0 0
\(63\) 0.190983 + 0.587785i 0.0240616 + 0.0740540i
\(64\) 0 0
\(65\) 3.61803 0.448762
\(66\) 0 0
\(67\) −14.4721 −1.76805 −0.884026 0.467437i \(-0.845177\pi\)
−0.884026 + 0.467437i \(0.845177\pi\)
\(68\) 0 0
\(69\) 2.00000 + 6.15537i 0.240772 + 0.741019i
\(70\) 0 0
\(71\) 4.11803 + 2.99193i 0.488721 + 0.355076i 0.804692 0.593692i \(-0.202330\pi\)
−0.315971 + 0.948769i \(0.602330\pi\)
\(72\) 0 0
\(73\) 0.972136 2.99193i 0.113780 0.350179i −0.877911 0.478824i \(-0.841063\pi\)
0.991691 + 0.128646i \(0.0410631\pi\)
\(74\) 0 0
\(75\) −6.04508 + 4.39201i −0.698026 + 0.507146i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.11803 + 2.26538i −0.350806 + 0.254876i −0.749207 0.662336i \(-0.769565\pi\)
0.398401 + 0.917211i \(0.369565\pi\)
\(80\) 0 0
\(81\) −2.38197 + 7.33094i −0.264663 + 0.814549i
\(82\) 0 0
\(83\) 7.59017 + 5.51458i 0.833129 + 0.605304i 0.920443 0.390877i \(-0.127828\pi\)
−0.0873136 + 0.996181i \(0.527828\pi\)
\(84\) 0 0
\(85\) 0.354102 + 1.08981i 0.0384078 + 0.118207i
\(86\) 0 0
\(87\) 11.8541 1.27089
\(88\) 0 0
\(89\) −4.47214 −0.474045 −0.237023 0.971504i \(-0.576172\pi\)
−0.237023 + 0.971504i \(0.576172\pi\)
\(90\) 0 0
\(91\) −2.92705 9.00854i −0.306838 0.944351i
\(92\) 0 0
\(93\) 1.42705 + 1.03681i 0.147978 + 0.107513i
\(94\) 0 0
\(95\) −0.927051 + 2.85317i −0.0951134 + 0.292729i
\(96\) 0 0
\(97\) 9.97214 7.24518i 1.01252 0.735637i 0.0477815 0.998858i \(-0.484785\pi\)
0.964736 + 0.263221i \(0.0847849\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.50000 1.81636i 0.248759 0.180734i −0.456417 0.889766i \(-0.650868\pi\)
0.705177 + 0.709032i \(0.250868\pi\)
\(102\) 0 0
\(103\) 3.73607 11.4984i 0.368126 1.13297i −0.579875 0.814706i \(-0.696899\pi\)
0.948000 0.318269i \(-0.103101\pi\)
\(104\) 0 0
\(105\) −1.30902 0.951057i −0.127747 0.0928136i
\(106\) 0 0
\(107\) −1.20820 3.71847i −0.116801 0.359478i 0.875517 0.483187i \(-0.160521\pi\)
−0.992319 + 0.123709i \(0.960521\pi\)
\(108\) 0 0
\(109\) −14.9443 −1.43140 −0.715701 0.698407i \(-0.753893\pi\)
−0.715701 + 0.698407i \(0.753893\pi\)
\(110\) 0 0
\(111\) 15.5623 1.47711
\(112\) 0 0
\(113\) 2.73607 + 8.42075i 0.257388 + 0.792158i 0.993350 + 0.115135i \(0.0367301\pi\)
−0.735962 + 0.677023i \(0.763270\pi\)
\(114\) 0 0
\(115\) 2.00000 + 1.45309i 0.186501 + 0.135501i
\(116\) 0 0
\(117\) −0.690983 + 2.12663i −0.0638814 + 0.196607i
\(118\) 0 0
\(119\) 2.42705 1.76336i 0.222487 0.161647i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 12.5902 9.14729i 1.13522 0.824784i
\(124\) 0 0
\(125\) −1.83688 + 5.65334i −0.164296 + 0.505650i
\(126\) 0 0
\(127\) −4.59017 3.33495i −0.407312 0.295929i 0.365201 0.930929i \(-0.381000\pi\)
−0.772513 + 0.634999i \(0.781000\pi\)
\(128\) 0 0
\(129\) 0.763932 + 2.35114i 0.0672605 + 0.207006i
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) 7.85410 0.681037
\(134\) 0 0
\(135\) 1.04508 + 3.21644i 0.0899466 + 0.276827i
\(136\) 0 0
\(137\) −14.2082 10.3229i −1.21389 0.881942i −0.218311 0.975879i \(-0.570055\pi\)
−0.995578 + 0.0939375i \(0.970055\pi\)
\(138\) 0 0
\(139\) 5.02786 15.4742i 0.426458 1.31250i −0.475134 0.879914i \(-0.657600\pi\)
0.901591 0.432589i \(-0.142400\pi\)
\(140\) 0 0
\(141\) −13.8262 + 10.0453i −1.16438 + 0.845971i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 3.66312 2.66141i 0.304205 0.221018i
\(146\) 0 0
\(147\) 2.19098 6.74315i 0.180709 0.556166i
\(148\) 0 0
\(149\) −14.4443 10.4944i −1.18332 0.859733i −0.190778 0.981633i \(-0.561101\pi\)
−0.992542 + 0.121900i \(0.961101\pi\)
\(150\) 0 0
\(151\) −2.26393 6.96767i −0.184236 0.567021i 0.815698 0.578478i \(-0.196353\pi\)
−0.999934 + 0.0114571i \(0.996353\pi\)
\(152\) 0 0
\(153\) −0.708204 −0.0572549
\(154\) 0 0
\(155\) 0.673762 0.0541179
\(156\) 0 0
\(157\) −0.208204 0.640786i −0.0166165 0.0511403i 0.942404 0.334475i \(-0.108559\pi\)
−0.959021 + 0.283335i \(0.908559\pi\)
\(158\) 0 0
\(159\) 0.809017 + 0.587785i 0.0641592 + 0.0466144i
\(160\) 0 0
\(161\) 2.00000 6.15537i 0.157622 0.485111i
\(162\) 0 0
\(163\) 7.11803 5.17155i 0.557527 0.405067i −0.273026 0.962007i \(-0.588024\pi\)
0.830553 + 0.556939i \(0.188024\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.5902 + 8.42075i −0.896874 + 0.651617i −0.937661 0.347551i \(-0.887014\pi\)
0.0407870 + 0.999168i \(0.487014\pi\)
\(168\) 0 0
\(169\) 6.57295 20.2295i 0.505611 1.55611i
\(170\) 0 0
\(171\) −1.50000 1.08981i −0.114708 0.0833401i
\(172\) 0 0
\(173\) −2.73607 8.42075i −0.208019 0.640218i −0.999576 0.0291218i \(-0.990729\pi\)
0.791556 0.611096i \(-0.209271\pi\)
\(174\) 0 0
\(175\) 7.47214 0.564840
\(176\) 0 0
\(177\) 3.85410 0.289692
\(178\) 0 0
\(179\) 7.50000 + 23.0826i 0.560576 + 1.72528i 0.680743 + 0.732523i \(0.261657\pi\)
−0.120166 + 0.992754i \(0.538343\pi\)
\(180\) 0 0
\(181\) 7.50000 + 5.44907i 0.557471 + 0.405026i 0.830532 0.556970i \(-0.188036\pi\)
−0.273062 + 0.961997i \(0.588036\pi\)
\(182\) 0 0
\(183\) −0.927051 + 2.85317i −0.0685296 + 0.210912i
\(184\) 0 0
\(185\) 4.80902 3.49396i 0.353566 0.256881i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 7.16312 5.20431i 0.521040 0.378558i
\(190\) 0 0
\(191\) 4.68034 14.4046i 0.338658 1.04228i −0.626235 0.779635i \(-0.715405\pi\)
0.964892 0.262646i \(-0.0845952\pi\)
\(192\) 0 0
\(193\) −5.97214 4.33901i −0.429884 0.312329i 0.351719 0.936106i \(-0.385597\pi\)
−0.781602 + 0.623777i \(0.785597\pi\)
\(194\) 0 0
\(195\) −1.80902 5.56758i −0.129546 0.398703i
\(196\) 0 0
\(197\) −0.472136 −0.0336383 −0.0168191 0.999859i \(-0.505354\pi\)
−0.0168191 + 0.999859i \(0.505354\pi\)
\(198\) 0 0
\(199\) 20.3607 1.44333 0.721665 0.692242i \(-0.243377\pi\)
0.721665 + 0.692242i \(0.243377\pi\)
\(200\) 0 0
\(201\) 7.23607 + 22.2703i 0.510393 + 1.57083i
\(202\) 0 0
\(203\) −9.59017 6.96767i −0.673098 0.489034i
\(204\) 0 0
\(205\) 1.83688 5.65334i 0.128293 0.394846i
\(206\) 0 0
\(207\) −1.23607 + 0.898056i −0.0859127 + 0.0624192i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 10.5902 7.69421i 0.729057 0.529691i −0.160208 0.987083i \(-0.551216\pi\)
0.889265 + 0.457392i \(0.151216\pi\)
\(212\) 0 0
\(213\) 2.54508 7.83297i 0.174386 0.536706i
\(214\) 0 0
\(215\) 0.763932 + 0.555029i 0.0520997 + 0.0378527i
\(216\) 0 0
\(217\) −0.545085 1.67760i −0.0370028 0.113883i
\(218\) 0 0
\(219\) −5.09017 −0.343962
\(220\) 0 0
\(221\) 10.8541 0.730126
\(222\) 0 0
\(223\) −2.97214 9.14729i −0.199029 0.612548i −0.999906 0.0137191i \(-0.995633\pi\)
0.800877 0.598829i \(-0.204367\pi\)
\(224\) 0 0
\(225\) −1.42705 1.03681i −0.0951367 0.0691209i
\(226\) 0 0
\(227\) −2.20820 + 6.79615i −0.146564 + 0.451077i −0.997209 0.0746638i \(-0.976212\pi\)
0.850645 + 0.525740i \(0.176212\pi\)
\(228\) 0 0
\(229\) 13.2082 9.59632i 0.872823 0.634143i −0.0585202 0.998286i \(-0.518638\pi\)
0.931343 + 0.364143i \(0.118638\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.9721 9.42481i 0.849833 0.617440i −0.0752671 0.997163i \(-0.523981\pi\)
0.925100 + 0.379724i \(0.123981\pi\)
\(234\) 0 0
\(235\) −2.01722 + 6.20837i −0.131589 + 0.404989i
\(236\) 0 0
\(237\) 5.04508 + 3.66547i 0.327713 + 0.238098i
\(238\) 0 0
\(239\) 7.26393 + 22.3561i 0.469865 + 1.44609i 0.852760 + 0.522303i \(0.174927\pi\)
−0.382895 + 0.923792i \(0.625073\pi\)
\(240\) 0 0
\(241\) −1.05573 −0.0680054 −0.0340027 0.999422i \(-0.510825\pi\)
−0.0340027 + 0.999422i \(0.510825\pi\)
\(242\) 0 0
\(243\) −3.94427 −0.253025
\(244\) 0 0
\(245\) −0.836881 2.57565i −0.0534664 0.164553i
\(246\) 0 0
\(247\) 22.9894 + 16.7027i 1.46278 + 1.06277i
\(248\) 0 0
\(249\) 4.69098 14.4374i 0.297279 0.914931i
\(250\) 0 0
\(251\) −8.59017 + 6.24112i −0.542207 + 0.393936i −0.824904 0.565273i \(-0.808771\pi\)
0.282697 + 0.959209i \(0.408771\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 1.50000 1.08981i 0.0939336 0.0682468i
\(256\) 0 0
\(257\) −0.791796 + 2.43690i −0.0493909 + 0.152010i −0.972710 0.232024i \(-0.925465\pi\)
0.923319 + 0.384033i \(0.125465\pi\)
\(258\) 0 0
\(259\) −12.5902 9.14729i −0.782315 0.568385i
\(260\) 0 0
\(261\) 0.864745 + 2.66141i 0.0535264 + 0.164737i
\(262\) 0 0
\(263\) −7.41641 −0.457315 −0.228658 0.973507i \(-0.573434\pi\)
−0.228658 + 0.973507i \(0.573434\pi\)
\(264\) 0 0
\(265\) 0.381966 0.0234640
\(266\) 0 0
\(267\) 2.23607 + 6.88191i 0.136845 + 0.421166i
\(268\) 0 0
\(269\) 0.736068 + 0.534785i 0.0448789 + 0.0326064i 0.609999 0.792403i \(-0.291170\pi\)
−0.565120 + 0.825009i \(0.691170\pi\)
\(270\) 0 0
\(271\) 8.15248 25.0907i 0.495228 1.52415i −0.321374 0.946952i \(-0.604145\pi\)
0.816602 0.577202i \(-0.195855\pi\)
\(272\) 0 0
\(273\) −12.3992 + 9.00854i −0.750433 + 0.545221i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2.73607 + 1.98787i −0.164394 + 0.119440i −0.666941 0.745111i \(-0.732397\pi\)
0.502546 + 0.864550i \(0.332397\pi\)
\(278\) 0 0
\(279\) −0.128677 + 0.396027i −0.00770370 + 0.0237095i
\(280\) 0 0
\(281\) 10.9721 + 7.97172i 0.654543 + 0.475553i 0.864816 0.502090i \(-0.167435\pi\)
−0.210273 + 0.977643i \(0.567435\pi\)
\(282\) 0 0
\(283\) −4.26393 13.1230i −0.253464 0.780083i −0.994128 0.108208i \(-0.965489\pi\)
0.740664 0.671876i \(-0.234511\pi\)
\(284\) 0 0
\(285\) 4.85410 0.287532
\(286\) 0 0
\(287\) −15.5623 −0.918614
\(288\) 0 0
\(289\) −4.19098 12.8985i −0.246528 0.758736i
\(290\) 0 0
\(291\) −16.1353 11.7229i −0.945865 0.687211i
\(292\) 0 0
\(293\) 3.26393 10.0453i 0.190681 0.586856i −0.809319 0.587369i \(-0.800164\pi\)
1.00000 0.000513854i \(0.000163565\pi\)
\(294\) 0 0
\(295\) 1.19098 0.865300i 0.0693417 0.0503797i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 18.9443 13.7638i 1.09558 0.795982i
\(300\) 0 0
\(301\) 0.763932 2.35114i 0.0440323 0.135518i
\(302\) 0 0
\(303\) −4.04508 2.93893i −0.232384 0.168837i
\(304\) 0 0
\(305\) 0.354102 + 1.08981i 0.0202758 + 0.0624026i
\(306\) 0 0
\(307\) −33.8885 −1.93412 −0.967061 0.254546i \(-0.918074\pi\)
−0.967061 + 0.254546i \(0.918074\pi\)
\(308\) 0 0
\(309\) −19.5623 −1.11286
\(310\) 0 0
\(311\) 9.97214 + 30.6911i 0.565468 + 1.74033i 0.666557 + 0.745454i \(0.267767\pi\)
−0.101089 + 0.994877i \(0.532233\pi\)
\(312\) 0 0
\(313\) 22.4443 + 16.3067i 1.26863 + 0.921710i 0.999147 0.0412963i \(-0.0131487\pi\)
0.269478 + 0.963006i \(0.413149\pi\)
\(314\) 0 0
\(315\) 0.118034 0.363271i 0.00665046 0.0204680i
\(316\) 0 0
\(317\) 0.263932 0.191758i 0.0148239 0.0107702i −0.580349 0.814368i \(-0.697084\pi\)
0.595173 + 0.803598i \(0.297084\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −5.11803 + 3.71847i −0.285661 + 0.207545i
\(322\) 0 0
\(323\) −2.78115 + 8.55951i −0.154747 + 0.476264i
\(324\) 0 0
\(325\) 21.8713 + 15.8904i 1.21320 + 0.881443i
\(326\) 0 0
\(327\) 7.47214 + 22.9969i 0.413210 + 1.27173i
\(328\) 0 0
\(329\) 17.0902 0.942212
\(330\) 0 0
\(331\) −8.94427 −0.491622 −0.245811 0.969318i \(-0.579054\pi\)
−0.245811 + 0.969318i \(0.579054\pi\)
\(332\) 0 0
\(333\) 1.13525 + 3.49396i 0.0622116 + 0.191468i
\(334\) 0 0
\(335\) 7.23607 + 5.25731i 0.395349 + 0.287238i
\(336\) 0 0
\(337\) −8.15248 + 25.0907i −0.444094 + 1.36678i 0.439381 + 0.898301i \(0.355198\pi\)
−0.883475 + 0.468479i \(0.844802\pi\)
\(338\) 0 0
\(339\) 11.5902 8.42075i 0.629492 0.457352i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −14.8992 + 10.8249i −0.804480 + 0.584489i
\(344\) 0 0
\(345\) 1.23607 3.80423i 0.0665477 0.204813i
\(346\) 0 0
\(347\) −6.88197 5.00004i −0.369443 0.268416i 0.387537 0.921854i \(-0.373326\pi\)
−0.756980 + 0.653438i \(0.773326\pi\)
\(348\) 0 0
\(349\) −6.26393 19.2784i −0.335301 1.03195i −0.966574 0.256389i \(-0.917467\pi\)
0.631273 0.775561i \(-0.282533\pi\)
\(350\) 0 0
\(351\) 32.0344 1.70987
\(352\) 0 0
\(353\) 1.41641 0.0753878 0.0376939 0.999289i \(-0.487999\pi\)
0.0376939 + 0.999289i \(0.487999\pi\)
\(354\) 0 0
\(355\) −0.972136 2.99193i −0.0515956 0.158795i
\(356\) 0 0
\(357\) −3.92705 2.85317i −0.207842 0.151006i
\(358\) 0 0
\(359\) −4.79180 + 14.7476i −0.252901 + 0.778350i 0.741335 + 0.671136i \(0.234193\pi\)
−0.994236 + 0.107215i \(0.965807\pi\)
\(360\) 0 0
\(361\) −3.69098 + 2.68166i −0.194262 + 0.141140i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.57295 + 1.14281i −0.0823319 + 0.0598176i
\(366\) 0 0
\(367\) −8.44427 + 25.9888i −0.440787 + 1.35660i 0.446251 + 0.894908i \(0.352759\pi\)
−0.887038 + 0.461696i \(0.847241\pi\)
\(368\) 0 0
\(369\) 2.97214 + 2.15938i 0.154723 + 0.112413i
\(370\) 0 0
\(371\) −0.309017 0.951057i −0.0160434 0.0493764i
\(372\) 0 0
\(373\) 5.41641 0.280451 0.140225 0.990120i \(-0.455217\pi\)
0.140225 + 0.990120i \(0.455217\pi\)
\(374\) 0 0
\(375\) 9.61803 0.496673
\(376\) 0 0
\(377\) −13.2533 40.7894i −0.682579 2.10076i
\(378\) 0 0
\(379\) −15.5902 11.3269i −0.800813 0.581825i 0.110339 0.993894i \(-0.464806\pi\)
−0.911153 + 0.412069i \(0.864806\pi\)
\(380\) 0 0
\(381\) −2.83688 + 8.73102i −0.145338 + 0.447304i
\(382\) 0 0
\(383\) 1.59017 1.15533i 0.0812539 0.0590344i −0.546417 0.837513i \(-0.684008\pi\)
0.627671 + 0.778479i \(0.284008\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.472136 + 0.343027i −0.0240000 + 0.0174370i
\(388\) 0 0
\(389\) 8.26393 25.4338i 0.418998 1.28954i −0.489628 0.871932i \(-0.662867\pi\)
0.908626 0.417612i \(-0.137133\pi\)
\(390\) 0 0
\(391\) 6.00000 + 4.35926i 0.303433 + 0.220457i
\(392\) 0 0
\(393\) 4.00000 + 12.3107i 0.201773 + 0.620994i
\(394\) 0 0
\(395\) 2.38197 0.119850
\(396\) 0 0
\(397\) −2.58359 −0.129667 −0.0648334 0.997896i \(-0.520652\pi\)
−0.0648334 + 0.997896i \(0.520652\pi\)
\(398\) 0 0
\(399\) −3.92705 12.0862i −0.196598 0.605068i
\(400\) 0 0
\(401\) −5.73607 4.16750i −0.286446 0.208115i 0.435278 0.900296i \(-0.356650\pi\)
−0.721724 + 0.692181i \(0.756650\pi\)
\(402\) 0 0
\(403\) 1.97214 6.06961i 0.0982391 0.302349i
\(404\) 0 0
\(405\) 3.85410 2.80017i 0.191512 0.139142i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 1.26393 0.918300i 0.0624974 0.0454070i −0.556098 0.831117i \(-0.687702\pi\)
0.618595 + 0.785710i \(0.287702\pi\)
\(410\) 0 0
\(411\) −8.78115 + 27.0256i −0.433142 + 1.33308i
\(412\) 0 0
\(413\) −3.11803 2.26538i −0.153428 0.111472i
\(414\) 0 0
\(415\) −1.79180 5.51458i −0.0879558 0.270700i
\(416\) 0 0
\(417\) −26.3262 −1.28920
\(418\) 0 0
\(419\) 3.05573 0.149282 0.0746410 0.997210i \(-0.476219\pi\)
0.0746410 + 0.997210i \(0.476219\pi\)
\(420\) 0 0
\(421\) −2.50000 7.69421i −0.121843 0.374993i 0.871470 0.490449i \(-0.163167\pi\)
−0.993313 + 0.115456i \(0.963167\pi\)
\(422\) 0 0
\(423\) −3.26393 2.37139i −0.158698 0.115301i
\(424\) 0 0
\(425\) −2.64590 + 8.14324i −0.128345 + 0.395005i
\(426\) 0 0
\(427\) 2.42705 1.76336i 0.117453 0.0853348i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −26.8262 + 19.4904i −1.29217 + 0.938820i −0.999847 0.0174986i \(-0.994430\pi\)
−0.292328 + 0.956318i \(0.594430\pi\)
\(432\) 0 0
\(433\) −0.680340 + 2.09387i −0.0326950 + 0.100625i −0.966072 0.258272i \(-0.916847\pi\)
0.933377 + 0.358897i \(0.116847\pi\)
\(434\) 0 0
\(435\) −5.92705 4.30625i −0.284180 0.206469i
\(436\) 0 0
\(437\) 6.00000 + 18.4661i 0.287019 + 0.883353i
\(438\) 0 0
\(439\) 0.944272 0.0450676 0.0225338 0.999746i \(-0.492827\pi\)
0.0225338 + 0.999746i \(0.492827\pi\)
\(440\) 0 0
\(441\) 1.67376 0.0797030
\(442\) 0 0
\(443\) 1.79180 + 5.51458i 0.0851308 + 0.262006i 0.984556 0.175069i \(-0.0560147\pi\)
−0.899425 + 0.437074i \(0.856015\pi\)
\(444\) 0 0
\(445\) 2.23607 + 1.62460i 0.106000 + 0.0770134i
\(446\) 0 0
\(447\) −8.92705 + 27.4746i −0.422235 + 1.29951i
\(448\) 0 0
\(449\) −31.9164 + 23.1886i −1.50623 + 1.09434i −0.538412 + 0.842682i \(0.680976\pi\)
−0.967816 + 0.251657i \(0.919024\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −9.59017 + 6.96767i −0.450585 + 0.327370i
\(454\) 0 0
\(455\) −1.80902 + 5.56758i −0.0848080 + 0.261012i
\(456\) 0 0
\(457\) 7.73607 + 5.62058i 0.361878 + 0.262920i 0.753835 0.657064i \(-0.228202\pi\)
−0.391957 + 0.919984i \(0.628202\pi\)
\(458\) 0 0
\(459\) 3.13525 + 9.64932i 0.146341 + 0.450392i
\(460\) 0 0
\(461\) 30.3607 1.41404 0.707019 0.707195i \(-0.250040\pi\)
0.707019 + 0.707195i \(0.250040\pi\)
\(462\) 0 0
\(463\) 15.4164 0.716461 0.358231 0.933633i \(-0.383380\pi\)
0.358231 + 0.933633i \(0.383380\pi\)
\(464\) 0 0
\(465\) −0.336881 1.03681i −0.0156225 0.0480811i
\(466\) 0 0
\(467\) 2.59017 + 1.88187i 0.119859 + 0.0870825i 0.646100 0.763253i \(-0.276399\pi\)
−0.526241 + 0.850335i \(0.676399\pi\)
\(468\) 0 0
\(469\) 7.23607 22.2703i 0.334131 1.02835i
\(470\) 0 0
\(471\) −0.881966 + 0.640786i −0.0406388 + 0.0295259i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −18.1353 + 13.1760i −0.832103 + 0.604558i
\(476\) 0 0
\(477\) −0.0729490 + 0.224514i −0.00334011 + 0.0102798i
\(478\) 0 0
\(479\) −18.5902 13.5065i −0.849407 0.617130i 0.0755758 0.997140i \(-0.475921\pi\)
−0.924982 + 0.380010i \(0.875921\pi\)
\(480\) 0 0
\(481\) −17.3992 53.5492i −0.793335 2.44163i
\(482\) 0 0
\(483\) −10.4721 −0.476499
\(484\) 0 0
\(485\) −7.61803 −0.345917
\(486\) 0 0
\(487\) −10.2082 31.4176i −0.462578 1.42367i −0.862003 0.506903i \(-0.830790\pi\)
0.399425 0.916766i \(-0.369210\pi\)
\(488\) 0 0
\(489\) −11.5172 8.36775i −0.520827 0.378403i
\(490\) 0 0
\(491\) −6.02786 + 18.5519i −0.272034 + 0.837234i 0.717955 + 0.696089i \(0.245078\pi\)
−0.989989 + 0.141144i \(0.954922\pi\)
\(492\) 0 0
\(493\) 10.9894 7.98424i 0.494936 0.359592i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −6.66312 + 4.84104i −0.298882 + 0.217150i
\(498\) 0 0
\(499\) −3.68034 + 11.3269i −0.164755 + 0.507063i −0.999018 0.0443033i \(-0.985893\pi\)
0.834263 + 0.551366i \(0.185893\pi\)
\(500\) 0 0
\(501\) 18.7533 + 13.6251i 0.837835 + 0.608723i
\(502\) 0 0
\(503\) 2.50000 + 7.69421i 0.111469 + 0.343068i 0.991194 0.132415i \(-0.0422733\pi\)
−0.879725 + 0.475483i \(0.842273\pi\)
\(504\) 0 0
\(505\) −1.90983 −0.0849863
\(506\) 0 0
\(507\) −34.4164 −1.52849
\(508\) 0 0
\(509\) −6.02786 18.5519i −0.267180 0.822297i −0.991183 0.132500i \(-0.957700\pi\)
0.724003 0.689797i \(-0.242300\pi\)
\(510\) 0 0
\(511\) 4.11803 + 2.99193i 0.182171 + 0.132355i
\(512\) 0 0
\(513\) −8.20820 + 25.2623i −0.362401 + 1.11536i
\(514\) 0 0
\(515\) −6.04508 + 4.39201i −0.266378 + 0.193535i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −11.5902 + 8.42075i −0.508752 + 0.369630i
\(520\) 0 0
\(521\) −7.73607 + 23.8092i −0.338923 + 1.04310i 0.625834 + 0.779956i \(0.284759\pi\)
−0.964757 + 0.263142i \(0.915241\pi\)
\(522\) 0 0
\(523\) −10.1180 7.35118i −0.442431 0.321445i 0.344169 0.938908i \(-0.388161\pi\)
−0.786600 + 0.617463i \(0.788161\pi\)
\(524\) 0 0
\(525\) −3.73607 11.4984i −0.163055 0.501833i
\(526\) 0 0
\(527\) 2.02129 0.0880486
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0.281153 + 0.865300i 0.0122010 + 0.0375508i
\(532\) 0 0
\(533\) −45.5517 33.0952i −1.97306 1.43351i
\(534\) 0 0
\(535\) −0.746711 + 2.29814i −0.0322831 + 0.0993573i
\(536\) 0 0
\(537\) 31.7705 23.0826i 1.37100 0.996089i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.20820 1.60435i 0.0949381 0.0689766i −0.539304 0.842111i \(-0.681312\pi\)
0.634242 + 0.773135i \(0.281312\pi\)
\(542\) 0 0
\(543\) 4.63525 14.2658i 0.198918 0.612206i
\(544\) 0 0
\(545\) 7.47214 + 5.42882i 0.320071 + 0.232545i
\(546\) 0 0
\(547\) 3.15248 + 9.70232i 0.134790 + 0.414841i 0.995557 0.0941575i \(-0.0300157\pi\)
−0.860767 + 0.508999i \(0.830016\pi\)
\(548\) 0 0
\(549\) −0.708204 −0.0302254
\(550\) 0 0
\(551\) 35.5623 1.51501
\(552\) 0 0
\(553\) −1.92705 5.93085i −0.0819465 0.252206i
\(554\) 0 0
\(555\) −7.78115 5.65334i −0.330292 0.239971i
\(556\) 0 0
\(557\) −10.1525 + 31.2461i −0.430174 + 1.32394i 0.467778 + 0.883846i \(0.345055\pi\)
−0.897952 + 0.440094i \(0.854945\pi\)
\(558\) 0 0
\(559\) 7.23607 5.25731i 0.306053 0.222361i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.5902 9.14729i 0.530612 0.385512i −0.289974 0.957034i \(-0.593647\pi\)
0.820587 + 0.571522i \(0.193647\pi\)
\(564\) 0 0
\(565\) 1.69098 5.20431i 0.0711402 0.218947i
\(566\) 0 0
\(567\) −10.0902 7.33094i −0.423747 0.307870i
\(568\) 0 0
\(569\) −7.97214 24.5357i −0.334209 1.02859i −0.967110 0.254358i \(-0.918136\pi\)
0.632901 0.774233i \(-0.281864\pi\)
\(570\) 0 0
\(571\) 30.8328 1.29031 0.645157 0.764050i \(-0.276792\pi\)
0.645157 + 0.764050i \(0.276792\pi\)
\(572\) 0 0
\(573\) −24.5066 −1.02378
\(574\) 0 0
\(575\) 5.70820 + 17.5680i 0.238049 + 0.732638i
\(576\) 0 0
\(577\) 15.6803 + 11.3924i 0.652781 + 0.474273i 0.864217 0.503119i \(-0.167814\pi\)
−0.211436 + 0.977392i \(0.567814\pi\)
\(578\) 0 0
\(579\) −3.69098 + 11.3597i −0.153392 + 0.472092i
\(580\) 0 0
\(581\) −12.2812 + 8.92278i −0.509508 + 0.370179i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1.11803 0.812299i 0.0462250 0.0335844i
\(586\) 0 0
\(587\) 0.0278640 0.0857567i 0.00115007 0.00353956i −0.950480 0.310786i \(-0.899408\pi\)
0.951630 + 0.307247i \(0.0994077\pi\)
\(588\) 0 0
\(589\) 4.28115 + 3.11044i 0.176402 + 0.128163i
\(590\) 0 0
\(591\) 0.236068 + 0.726543i 0.00971054 + 0.0298860i
\(592\) 0 0
\(593\) −0.472136 −0.0193883 −0.00969415 0.999953i \(-0.503086\pi\)
−0.00969415 + 0.999953i \(0.503086\pi\)
\(594\) 0 0
\(595\) −1.85410 −0.0760108
\(596\) 0 0
\(597\) −10.1803 31.3319i −0.416654 1.28233i
\(598\) 0 0
\(599\) 20.2984 + 14.7476i 0.829369 + 0.602572i 0.919381 0.393369i \(-0.128690\pi\)
−0.0900117 + 0.995941i \(0.528690\pi\)
\(600\) 0 0
\(601\) 9.62461 29.6215i 0.392596 1.20829i −0.538222 0.842803i \(-0.680904\pi\)
0.930818 0.365483i \(-0.119096\pi\)
\(602\) 0 0
\(603\) −4.47214 + 3.24920i −0.182119 + 0.132318i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −23.7705 + 17.2703i −0.964815 + 0.700979i −0.954264 0.298965i \(-0.903359\pi\)
−0.0105512 + 0.999944i \(0.503359\pi\)
\(608\) 0 0
\(609\) −5.92705 + 18.2416i −0.240176 + 0.739186i
\(610\) 0 0
\(611\) 50.0238 + 36.3444i 2.02375 + 1.47034i
\(612\) 0 0
\(613\) 12.9721 + 39.9241i 0.523940 + 1.61252i 0.766403 + 0.642360i \(0.222045\pi\)
−0.242464 + 0.970161i \(0.577955\pi\)
\(614\) 0 0
\(615\) −9.61803 −0.387837
\(616\) 0 0
\(617\) −25.4164 −1.02323 −0.511613 0.859216i \(-0.670952\pi\)
−0.511613 + 0.859216i \(0.670952\pi\)
\(618\) 0 0
\(619\) −2.20820 6.79615i −0.0887552 0.273160i 0.896821 0.442394i \(-0.145871\pi\)
−0.985576 + 0.169234i \(0.945871\pi\)
\(620\) 0 0
\(621\) 17.7082 + 12.8658i 0.710606 + 0.516285i
\(622\) 0 0
\(623\) 2.23607 6.88191i 0.0895862 0.275718i
\(624\) 0 0
\(625\) −15.7082 + 11.4127i −0.628328 + 0.456507i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 14.4271 10.4819i 0.575244 0.417939i
\(630\) 0 0
\(631\) 3.73607 11.4984i 0.148731 0.457745i −0.848741 0.528808i \(-0.822639\pi\)
0.997472 + 0.0710628i \(0.0226391\pi\)
\(632\) 0 0
\(633\) −17.1353 12.4495i −0.681065 0.494823i
\(634\) 0 0
\(635\) 1.08359 + 3.33495i 0.0430010 + 0.132344i
\(636\) 0 0
\(637\) −25.6525 −1.01639
\(638\) 0 0
\(639\) 1.94427 0.0769142
\(640\) 0 0
\(641\) 4.15248 + 12.7800i 0.164013 + 0.504780i 0.998962 0.0455470i \(-0.0145031\pi\)
−0.834949 + 0.550327i \(0.814503\pi\)
\(642\) 0 0
\(643\) 21.5344 + 15.6457i 0.849235 + 0.617006i 0.924935 0.380125i \(-0.124119\pi\)
−0.0756997 + 0.997131i \(0.524119\pi\)
\(644\) 0 0
\(645\) 0.472136 1.45309i 0.0185903 0.0572152i
\(646\) 0 0
\(647\) 10.0623 7.31069i 0.395590 0.287413i −0.372152 0.928172i \(-0.621380\pi\)
0.767742 + 0.640759i \(0.221380\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −2.30902 + 1.67760i −0.0904975 + 0.0657503i
\(652\) 0 0
\(653\) −12.0279 + 37.0180i −0.470687 + 1.44862i 0.381001 + 0.924575i \(0.375580\pi\)
−0.851688 + 0.524050i \(0.824420\pi\)
\(654\) 0 0
\(655\) 4.00000 + 2.90617i 0.156293 + 0.113553i
\(656\) 0 0
\(657\) −0.371323 1.14281i −0.0144867 0.0445854i
\(658\) 0 0
\(659\) −32.0000 −1.24654 −0.623272 0.782006i \(-0.714197\pi\)
−0.623272 + 0.782006i \(0.714197\pi\)
\(660\) 0 0
\(661\) 6.94427 0.270101 0.135050 0.990839i \(-0.456880\pi\)
0.135050 + 0.990839i \(0.456880\pi\)
\(662\) 0 0
\(663\) −5.42705 16.7027i −0.210769 0.648681i
\(664\) 0 0
\(665\) −3.92705 2.85317i −0.152285 0.110641i
\(666\) 0 0
\(667\) 9.05573 27.8707i 0.350639 1.07916i
\(668\) 0 0
\(669\) −12.5902 + 9.14729i −0.486764 + 0.353655i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −6.26393 + 4.55101i −0.241457 + 0.175429i −0.701932 0.712244i \(-0.747679\pi\)
0.460475 + 0.887673i \(0.347679\pi\)
\(674\) 0 0
\(675\) −7.80902 + 24.0337i −0.300569 + 0.925057i
\(676\) 0 0
\(677\) −16.4443 11.9475i −0.632005 0.459178i 0.225089 0.974338i \(-0.427733\pi\)
−0.857094 + 0.515160i \(0.827733\pi\)
\(678\) 0 0
\(679\) 6.16312 + 18.9681i 0.236519 + 0.727930i
\(680\) 0 0
\(681\) 11.5623 0.443069
\(682\) 0 0
\(683\) −0.944272 −0.0361316 −0.0180658 0.999837i \(-0.505751\pi\)
−0.0180658 + 0.999837i \(0.505751\pi\)
\(684\) 0 0
\(685\) 3.35410 + 10.3229i 0.128154 + 0.394416i
\(686\) 0 0
\(687\) −21.3713 15.5272i −0.815367 0.592399i
\(688\) 0 0
\(689\) 1.11803 3.44095i 0.0425937 0.131090i
\(690\) 0 0
\(691\) −19.0623 + 13.8496i −0.725164 + 0.526863i −0.888030 0.459786i \(-0.847926\pi\)
0.162866 + 0.986648i \(0.447926\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.13525 + 5.91061i −0.308588 + 0.224202i
\(696\) 0 0
\(697\) 5.51064 16.9600i 0.208730 0.642406i
\(698\) 0 0
\(699\) −20.9894 15.2497i −0.793890 0.576795i
\(700\) 0 0
\(701\) 4.86068 + 14.9596i 0.183585 + 0.565018i 0.999921 0.0125600i \(-0.00399809\pi\)
−0.816336 + 0.577578i \(0.803998\pi\)
\(702\) 0 0
\(703\) 46.6869 1.76083
\(704\) 0 0
\(705\) 10.5623 0.397799
\(706\) 0 0
\(707\) 1.54508 + 4.75528i 0.0581089 + 0.178841i
\(708\) 0 0
\(709\) 15.9721 + 11.6044i 0.599846 + 0.435814i 0.845824 0.533462i \(-0.179109\pi\)
−0.245978 + 0.969275i \(0.579109\pi\)
\(710\) 0 0
\(711\) −0.454915 + 1.40008i −0.0170606 + 0.0525073i
\(712\) 0 0
\(713\) 3.52786 2.56314i 0.132120 0.0959905i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 30.7705 22.3561i 1.14915 0.834903i
\(718\) 0 0
\(719\) 0.0278640 0.0857567i 0.00103915 0.00319819i −0.950536 0.310616i \(-0.899465\pi\)
0.951575 + 0.307417i \(0.0994648\pi\)
\(720\) 0 0
\(721\) 15.8262 + 11.4984i 0.589400 + 0.428224i
\(722\) 0 0
\(723\) 0.527864 + 1.62460i 0.0196315 + 0.0604195i
\(724\) 0 0
\(725\) 33.8328 1.25652
\(726\) 0 0
\(727\) −28.9443 −1.07348 −0.536742 0.843747i \(-0.680345\pi\)
−0.536742 + 0.843747i \(0.680345\pi\)
\(728\) 0 0
\(729\) 9.11803 + 28.0624i 0.337705 + 1.03935i
\(730\) 0 0
\(731\) 2.29180 + 1.66509i 0.0847651 + 0.0615855i
\(732\) 0 0
\(733\) 4.02786 12.3965i 0.148773 0.457875i −0.848704 0.528868i \(-0.822617\pi\)
0.997477 + 0.0709929i \(0.0226168\pi\)
\(734\) 0 0
\(735\) −3.54508 + 2.57565i −0.130762 + 0.0950045i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 6.59017 4.78804i 0.242423 0.176131i −0.459939 0.887951i \(-0.652129\pi\)
0.702362 + 0.711820i \(0.252129\pi\)
\(740\) 0 0
\(741\) 14.2082 43.7284i 0.521951 1.60640i
\(742\) 0 0
\(743\) 37.7705 + 27.4419i 1.38567 + 1.00674i 0.996325 + 0.0856511i \(0.0272970\pi\)
0.389340 + 0.921094i \(0.372703\pi\)
\(744\) 0 0
\(745\) 3.40983 + 10.4944i 0.124927 + 0.384484i
\(746\) 0 0
\(747\) 3.58359 0.131117
\(748\) 0 0
\(749\) 6.32624 0.231156
\(750\) 0 0
\(751\) 1.02786 + 3.16344i 0.0375073 + 0.115436i 0.968057 0.250730i \(-0.0806705\pi\)
−0.930550 + 0.366165i \(0.880671\pi\)
\(752\) 0 0
\(753\) 13.8992 + 10.0984i 0.506515 + 0.368004i
\(754\) 0 0
\(755\) −1.39919 + 4.30625i −0.0509216 + 0.156721i
\(756\) 0 0
\(757\) 21.9721 15.9637i 0.798591 0.580210i −0.111910 0.993718i \(-0.535697\pi\)
0.910500 + 0.413508i \(0.135697\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.26393 3.82447i 0.190817 0.138637i −0.488275 0.872690i \(-0.662374\pi\)
0.679092 + 0.734053i \(0.262374\pi\)
\(762\) 0 0
\(763\) 7.47214 22.9969i 0.270509 0.832543i
\(764\) 0 0
\(765\) 0.354102 + 0.257270i 0.0128026 + 0.00930162i
\(766\) 0 0
\(767\) −4.30902 13.2618i −0.155590 0.478856i
\(768\) 0 0
\(769\) −36.2492 −1.30718 −0.653590 0.756849i \(-0.726738\pi\)
−0.653590 + 0.756849i \(0.726738\pi\)
\(770\) 0 0
\(771\) 4.14590 0.149311
\(772\) 0 0
\(773\) 12.5557 + 38.6426i 0.451598 + 1.38988i 0.875083 + 0.483973i \(0.160807\pi\)
−0.423485 + 0.905903i \(0.639193\pi\)
\(774\) 0 0
\(775\) 4.07295 + 2.95917i 0.146305 + 0.106297i
\(776\) 0 0
\(777\) −7.78115 + 23.9479i −0.279147 + 0.859127i
\(778\) 0 0
\(779\) 37.7705 27.4419i 1.35327 0.983207i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 32.4336 23.5644i 1.15908 0.842123i
\(784\) 0 0
\(785\) −0.128677 + 0.396027i −0.00459268 + 0.0141348i
\(786\) 0 0
\(787\) −19.0623 13.8496i −0.679498 0.493684i 0.193693 0.981062i \(-0.437953\pi\)
−0.873191 + 0.487378i \(0.837953\pi\)
\(788\) 0 0
\(789\) 3.70820 + 11.4127i 0.132016 + 0.406302i
\(790\) 0 0
\(791\) −14.3262 −0.509382
\(792\) 0 0
\(793\) 10.8541 0.385440
\(794\) 0 0
\(795\) −0.190983 0.587785i −0.00677347 0.0208466i
\(796\) 0 0
\(797\) −9.26393 6.73064i −0.328145 0.238412i 0.411498 0.911411i \(-0.365006\pi\)
−0.739643 + 0.672999i \(0.765006\pi\)
\(798\) 0 0
\(799\) −6.05166 + 18.6251i −0.214092 + 0.658909i
\(800\) 0 0
\(801\) −1.38197 + 1.00406i −0.0488294 + 0.0354766i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −3.23607 + 2.35114i −0.114056 + 0.0828668i
\(806\) 0 0
\(807\) 0.454915 1.40008i 0.0160138 0.0492853i
\(808\) 0 0
\(809\) −1.20820 0.877812i −0.0424782 0.0308622i 0.566344 0.824169i \(-0.308358\pi\)
−0.608822 + 0.793307i \(0.708358\pi\)
\(810\) 0 0
\(811\) −13.2082 40.6507i −0.463803 1.42744i −0.860482 0.509481i \(-0.829837\pi\)
0.396679 0.917957i \(-0.370163\pi\)
\(812\) 0 0
\(813\) −42.6869 −1.49710
\(814\) 0 0
\(815\) −5.43769 −0.190474
\(816\) 0 0
\(817\) 2.29180 + 7.05342i 0.0801798 + 0.246768i
\(818\) 0 0
\(819\) −2.92705 2.12663i −0.102279 0.0743104i
\(820\) 0 0
\(821\) 14.3885 44.2834i 0.502164 1.54550i −0.303324 0.952888i \(-0.598096\pi\)
0.805487 0.592613i \(-0.201904\pi\)
\(822\) 0 0
\(823\) −11.0623 + 8.03724i −0.385608 + 0.280160i −0.763653 0.645627i \(-0.776596\pi\)
0.378046 + 0.925787i \(0.376596\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 11.0623 8.03724i 0.384674 0.279482i −0.378595 0.925562i \(-0.623593\pi\)
0.763270 + 0.646080i \(0.223593\pi\)
\(828\) 0 0
\(829\) −5.26393 + 16.2007i −0.182824 + 0.562674i −0.999904 0.0138499i \(-0.995591\pi\)
0.817080 + 0.576524i \(0.195591\pi\)
\(830\) 0 0
\(831\) 4.42705 + 3.21644i 0.153573 + 0.111577i
\(832\) 0 0
\(833\) −2.51064 7.72696i −0.0869886 0.267723i
\(834\) 0 0
\(835\) 8.85410 0.306409
\(836\) 0 0
\(837\) 5.96556 0.206200
\(838\) 0 0
\(839\) 5.86068 + 18.0373i 0.202333 + 0.622717i 0.999812 + 0.0193710i \(0.00616635\pi\)
−0.797479 + 0.603346i \(0.793834\pi\)
\(840\) 0 0
\(841\) −19.9615 14.5029i −0.688327 0.500099i
\(842\) 0 0
\(843\) 6.78115 20.8702i 0.233555 0.718809i
\(844\) 0 0
\(845\) −10.6353 + 7.72696i −0.365864 + 0.265816i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −18.0623 + 13.1230i −0.619897 + 0.450381i
\(850\) 0 0
\(851\) 11.8885 36.5892i 0.407534 1.25426i
\(852\) 0 0
\(853\) −26.6246 19.3439i −0.911609 0.662323i 0.0298120 0.999556i \(-0.490509\pi\)
−0.941421 + 0.337233i \(0.890509\pi\)
\(854\) 0 0
\(855\) 0.354102 + 1.08981i 0.0121100 + 0.0372708i
\(856\) 0 0
\(857\) 26.3607 0.900464 0.450232 0.892912i \(-0.351341\pi\)
0.450232 + 0.892912i \(0.351341\pi\)
\(858\) 0 0
\(859\) 13.8885 0.473871 0.236935 0.971525i \(-0.423857\pi\)
0.236935 + 0.971525i \(0.423857\pi\)
\(860\) 0 0
\(861\) 7.78115 + 23.9479i 0.265181 + 0.816143i
\(862\) 0 0
\(863\) 10.1180 + 7.35118i 0.344422 + 0.250237i 0.746525 0.665357i \(-0.231721\pi\)
−0.402103 + 0.915594i \(0.631721\pi\)
\(864\) 0 0
\(865\) −1.69098 + 5.20431i −0.0574951 + 0.176952i
\(866\) 0 0
\(867\) −17.7533 + 12.8985i −0.602933 + 0.438057i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 68.5410 49.7980i 2.32242 1.68734i
\(872\) 0 0
\(873\) 1.45492 4.47777i 0.0492414 0.151549i
\(874\) 0 0
\(875\) −7.78115 5.65334i −0.263051 0.191118i
\(876\) 0 0
\(877\) −5.86068 18.0373i −0.197901 0.609077i −0.999930 0.0117923i \(-0.996246\pi\)
0.802029 0.597285i \(-0.203754\pi\)
\(878\) 0 0
\(879\) −17.0902 −0.576437
\(880\) 0 0
\(881\) 31.5279 1.06220 0.531100 0.847309i \(-0.321779\pi\)
0.531100 + 0.847309i \(0.321779\pi\)
\(882\) 0 0
\(883\) 3.97214 + 12.2250i 0.133673 + 0.411403i 0.995381 0.0960009i \(-0.0306052\pi\)
−0.861708 + 0.507404i \(0.830605\pi\)
\(884\) 0 0
\(885\) −1.92705 1.40008i −0.0647771 0.0470633i
\(886\) 0 0
\(887\) 15.3197 47.1491i 0.514384 1.58311i −0.270016 0.962856i \(-0.587029\pi\)
0.784400 0.620255i \(-0.212971\pi\)
\(888\) 0 0
\(889\) 7.42705 5.39607i 0.249095 0.180978i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −41.4787 + 30.1360i −1.38803 + 1.00846i
\(894\) 0 0
\(895\) 4.63525 14.2658i 0.154939 0.476855i
\(896\) 0 0
\(897\) −30.6525 22.2703i −1.02346 0.743585i
\(898\) 0 0
\(899\) −2.46807 7.59594i −0.0823148 0.253339i
\(900\) 0 0
\(901\) 1.14590 0.0381754
\(902\) 0 0
\(903\) −4.00000 −0.133112
\(904\) 0 0
\(905\) −1.77051 5.44907i −0.0588537 0.181133i
\(906\) 0 0
\(907\) −22.0623 16.0292i −0.732567 0.532241i 0.157808 0.987470i \(-0.449557\pi\)
−0.890374 + 0.455229i \(0.849557\pi\)
\(908\) 0 0
\(909\) 0.364745 1.12257i 0.0120978 0.0372333i
\(910\) 0 0
\(911\) −38.0066 + 27.6134i −1.25921 + 0.914873i −0.998719 0.0506025i \(-0.983886\pi\)
−0.260495 + 0.965475i \(0.583886\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 1.50000 1.08981i 0.0495885 0.0360281i
\(916\) 0 0
\(917\) 4.00000 12.3107i 0.132092 0.406536i
\(918\) 0 0
\(919\) −15.0623 10.9434i −0.496860 0.360990i 0.310957 0.950424i \(-0.399351\pi\)
−0.807816 + 0.589434i \(0.799351\pi\)
\(920\) 0 0
\(921\) 16.9443 + 52.1491i 0.558333 + 1.71837i
\(922\) 0 0
\(923\) −29.7984 −0.980825
\(924\) 0 0
\(925\) 44.4164 1.46040
\(926\) 0 0
\(927\) −1.42705 4.39201i −0.0468705 0.144253i
\(928\) 0 0
\(929\) 11.6803 + 8.48626i 0.383220 + 0.278425i 0.762671 0.646786i \(-0.223887\pi\)
−0.379452 + 0.925211i \(0.623887\pi\)
\(930\) 0 0
\(931\) 6.57295 20.2295i 0.215420 0.662994i
\(932\) 0 0
\(933\) 42.2426 30.6911i 1.38296 1.00478i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.26393 0.918300i 0.0412909 0.0299996i −0.566948 0.823753i \(-0.691876\pi\)
0.608239 + 0.793754i \(0.291876\pi\)
\(938\) 0 0
\(939\) 13.8713 42.6915i 0.452674 1.39319i
\(940\) 0 0
\(941\) −23.6803 17.2048i −0.771957 0.560860i 0.130597 0.991435i \(-0.458310\pi\)
−0.902554 + 0.430576i \(0.858310\pi\)
\(942\) 0 0
\(943\) −11.8885 36.5892i −0.387144 1.19151i
\(944\) 0 0
\(945\) −5.47214 −0.178009
\(946\) 0 0
\(947\) 18.8328 0.611984 0.305992 0.952034i \(-0.401012\pi\)
0.305992 + 0.952034i \(0.401012\pi\)
\(948\) 0 0
\(949\) 5.69098 + 17.5150i 0.184737 + 0.568562i
\(950\) 0 0
\(951\) −0.427051 0.310271i −0.0138481 0.0100612i
\(952\) 0 0
\(953\) 9.26393 28.5115i 0.300088 0.923576i −0.681376 0.731933i \(-0.738618\pi\)
0.981465 0.191643i \(-0.0613817\pi\)
\(954\) 0 0
\(955\) −7.57295 + 5.50207i −0.245055 + 0.178043i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22.9894 16.7027i 0.742365 0.539360i
\(960\) 0 0
\(961\) −9.21227 + 28.3524i −0.297170 + 0.914595i
\(962\) 0 0
\(963\) −1.20820 0.877812i −0.0389338 0.0282871i
\(964\) 0 0
\(965\) 1.40983 + 4.33901i 0.0453840 + 0.139678i
\(966\) 0 0
\(967\) −33.3050 −1.07102 −0.535508 0.844530i \(-0.679880\pi\)
−0.535508 + 0.844530i \(0.679880\pi\)
\(968\) 0 0
\(969\) 14.5623 0.467809
\(970\) 0 0
\(971\) −3.44427 10.6004i −0.110532 0.340182i 0.880457 0.474126i \(-0.157236\pi\)
−0.990989 + 0.133944i \(0.957236\pi\)
\(972\) 0 0
\(973\) 21.2984 + 15.4742i 0.682795 + 0.496079i
\(974\) 0 0
\(975\) 13.5172 41.6017i 0.432898 1.33232i
\(976\) 0 0
\(977\) 7.02786 5.10604i 0.224841 0.163357i −0.469662 0.882846i \(-0.655624\pi\)
0.694503 + 0.719490i \(0.255624\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −4.61803 + 3.35520i −0.147442 + 0.107123i
\(982\) 0 0
\(983\) 2.50000 7.69421i 0.0797376 0.245407i −0.903239 0.429138i \(-0.858817\pi\)
0.982977 + 0.183731i \(0.0588174\pi\)
\(984\) 0 0
\(985\) 0.236068 + 0.171513i 0.00752175 + 0.00546487i
\(986\) 0 0
\(987\) −8.54508 26.2991i −0.271993 0.837109i
\(988\) 0 0
\(989\) 6.11146 0.194333
\(990\) 0 0
\(991\) 27.0557 0.859454 0.429727 0.902959i \(-0.358610\pi\)
0.429727 + 0.902959i \(0.358610\pi\)
\(992\) 0 0
\(993\) 4.47214 + 13.7638i 0.141919 + 0.436782i
\(994\) 0 0
\(995\) −10.1803 7.39645i −0.322738 0.234483i
\(996\) 0 0
\(997\) −8.84752 + 27.2299i −0.280204 + 0.862379i 0.707591 + 0.706622i \(0.249782\pi\)
−0.987795 + 0.155757i \(0.950218\pi\)
\(998\) 0 0
\(999\) 42.5795 30.9358i 1.34716 0.978767i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.2.i.c.729.1 4
11.2 odd 10 968.2.a.i.1.1 2
11.3 even 5 968.2.i.k.753.1 4
11.4 even 5 inner 968.2.i.c.81.1 4
11.5 even 5 968.2.i.k.9.1 4
11.6 odd 10 88.2.i.a.9.1 4
11.7 odd 10 968.2.i.d.81.1 4
11.8 odd 10 88.2.i.a.49.1 yes 4
11.9 even 5 968.2.a.h.1.1 2
11.10 odd 2 968.2.i.d.729.1 4
33.2 even 10 8712.2.a.bp.1.1 2
33.8 even 10 792.2.r.b.577.1 4
33.17 even 10 792.2.r.b.361.1 4
33.20 odd 10 8712.2.a.bm.1.1 2
44.19 even 10 176.2.m.a.49.1 4
44.31 odd 10 1936.2.a.u.1.2 2
44.35 even 10 1936.2.a.t.1.2 2
44.39 even 10 176.2.m.a.97.1 4
88.13 odd 10 7744.2.a.cr.1.2 2
88.19 even 10 704.2.m.g.577.1 4
88.35 even 10 7744.2.a.cb.1.1 2
88.53 even 10 7744.2.a.cq.1.2 2
88.61 odd 10 704.2.m.b.449.1 4
88.75 odd 10 7744.2.a.cc.1.1 2
88.83 even 10 704.2.m.g.449.1 4
88.85 odd 10 704.2.m.b.577.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.i.a.9.1 4 11.6 odd 10
88.2.i.a.49.1 yes 4 11.8 odd 10
176.2.m.a.49.1 4 44.19 even 10
176.2.m.a.97.1 4 44.39 even 10
704.2.m.b.449.1 4 88.61 odd 10
704.2.m.b.577.1 4 88.85 odd 10
704.2.m.g.449.1 4 88.83 even 10
704.2.m.g.577.1 4 88.19 even 10
792.2.r.b.361.1 4 33.17 even 10
792.2.r.b.577.1 4 33.8 even 10
968.2.a.h.1.1 2 11.9 even 5
968.2.a.i.1.1 2 11.2 odd 10
968.2.i.c.81.1 4 11.4 even 5 inner
968.2.i.c.729.1 4 1.1 even 1 trivial
968.2.i.d.81.1 4 11.7 odd 10
968.2.i.d.729.1 4 11.10 odd 2
968.2.i.k.9.1 4 11.5 even 5
968.2.i.k.753.1 4 11.3 even 5
1936.2.a.t.1.2 2 44.35 even 10
1936.2.a.u.1.2 2 44.31 odd 10
7744.2.a.cb.1.1 2 88.35 even 10
7744.2.a.cc.1.1 2 88.75 odd 10
7744.2.a.cq.1.2 2 88.53 even 10
7744.2.a.cr.1.2 2 88.13 odd 10
8712.2.a.bm.1.1 2 33.20 odd 10
8712.2.a.bp.1.1 2 33.2 even 10