L(s) = 1 | + (−0.831 − 1.14i)2-s + (0.618 + 1.90i)3-s + (−0.618 + 1.90i)4-s + (1.66 − 2.28i)6-s + (2.68 − 0.874i)8-s + (−0.809 + 0.587i)9-s − 3.99·12-s + (−3.23 − 2.35i)16-s + (3.32 − 4.57i)17-s + (1.34 + 0.437i)18-s + (8.06 − 2.62i)19-s + (3.32 + 4.57i)24-s + (1.54 + 4.75i)25-s + (3.23 + 2.35i)27-s + 5.65i·32-s + ⋯ |
L(s) = 1 | + (−0.587 − 0.809i)2-s + (0.356 + 1.09i)3-s + (−0.309 + 0.951i)4-s + (0.678 − 0.934i)6-s + (0.951 − 0.309i)8-s + (−0.269 + 0.195i)9-s − 1.15·12-s + (−0.809 − 0.587i)16-s + (0.806 − 1.10i)17-s + (0.317 + 0.103i)18-s + (1.85 − 0.601i)19-s + (0.678 + 0.934i)24-s + (0.309 + 0.951i)25-s + (0.622 + 0.452i)27-s + 0.999i·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.958 - 0.286i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.958 - 0.286i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.38023 + 0.201819i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.38023 + 0.201819i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.831 + 1.14i)T \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (-0.618 - 1.90i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (-1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-3.32 + 4.57i)T + (-5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-8.06 + 2.62i)T + (15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (10.7 - 3.49i)T + (33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 8.48iT - 43T^{2} \) |
| 47 | \( 1 + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (1.85 - 5.70i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 14T + 67T^{2} \) |
| 71 | \( 1 + (-21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (16.1 + 5.24i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-1.66 + 2.28i)T + (-25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 18T + 89T^{2} \) |
| 97 | \( 1 + (8.09 - 5.87i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.812485814054689917506477541590, −9.510776758998169859136161456581, −8.795900215282151910972457928209, −7.71535688597177114058285562389, −7.02642726856748999922570370698, −5.29938131556421681876797322014, −4.60747256774488109939658552174, −3.39137474446855105255960182977, −2.94581417892924263598829772378, −1.15886717318384733764948724713,
0.999877725211212414818740559137, 2.02435868604398995908738758780, 3.60187525345255533036264675113, 5.08060657767811712694530541479, 5.92364350865537645902763071413, 6.83250805199909928764923346610, 7.49789368704775662339885992421, 8.160169577003454342218514473197, 8.793239240651029431098835156546, 9.983306128581646517250115318379