Properties

Label 968.2.k.a
Level 968968
Weight 22
Character orbit 968.k
Analytic conductor 7.7307.730
Analytic rank 00
Dimension 88
CM discriminant -8
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(403,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.403");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 968=23112 968 = 2^{3} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 968.k (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 7.729518915667.72951891566
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: 8.0.64000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x82x6+4x48x2+16 x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: U(1)[D10]\mathrm{U}(1)[D_{10}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ7q22β6q32β4q42β3q62β1q8β2q94q12+(4β64β4+4β24)q164β3q17+7β5q98+O(q100) q - \beta_{7} q^{2} - 2 \beta_{6} q^{3} - 2 \beta_{4} q^{4} - 2 \beta_{3} q^{6} - 2 \beta_1 q^{8} - \beta_{2} q^{9} - 4 q^{12} + (4 \beta_{6} - 4 \beta_{4} + 4 \beta_{2} - 4) q^{16} - 4 \beta_{3} q^{17}+ \cdots - 7 \beta_{5} q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q3+4q42q932q128q1610q25+8q2764q34+4q3624q3816q48+14q49+12q59+16q64+112q6720q75+22q81+32q82+20q97+O(q100) 8 q - 4 q^{3} + 4 q^{4} - 2 q^{9} - 32 q^{12} - 8 q^{16} - 10 q^{25} + 8 q^{27} - 64 q^{34} + 4 q^{36} - 24 q^{38} - 16 q^{48} + 14 q^{49} + 12 q^{59} + 16 q^{64} + 112 q^{67} - 20 q^{75} + 22 q^{81} + 32 q^{82}+ \cdots - 20 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x82x6+4x48x2+16 x^{8} - 2x^{6} + 4x^{4} - 8x^{2} + 16 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
β4\beta_{4}== (ν4)/4 ( \nu^{4} ) / 4 Copy content Toggle raw display
β5\beta_{5}== (ν5)/4 ( \nu^{5} ) / 4 Copy content Toggle raw display
β6\beta_{6}== (ν6)/8 ( \nu^{6} ) / 8 Copy content Toggle raw display
β7\beta_{7}== (ν7)/8 ( \nu^{7} ) / 8 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display
ν4\nu^{4}== 4β4 4\beta_{4} Copy content Toggle raw display
ν5\nu^{5}== 4β5 4\beta_{5} Copy content Toggle raw display
ν6\nu^{6}== 8β6 8\beta_{6} Copy content Toggle raw display
ν7\nu^{7}== 8β7 8\beta_{7} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/968Z)×\left(\mathbb{Z}/968\mathbb{Z}\right)^\times.

nn 485485 727727 849849
χ(n)\chi(n) 1-1 1-1 β4-\beta_{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
403.1
−1.34500 0.437016i
1.34500 + 0.437016i
0.831254 + 1.14412i
−0.831254 1.14412i
0.831254 1.14412i
−0.831254 + 1.14412i
−1.34500 + 0.437016i
1.34500 0.437016i
−0.831254 + 1.14412i 0.618034 1.90211i −0.618034 1.90211i 0 1.66251 + 2.28825i 0 2.68999 + 0.874032i −0.809017 0.587785i 0
403.2 0.831254 1.14412i 0.618034 1.90211i −0.618034 1.90211i 0 −1.66251 2.28825i 0 −2.68999 0.874032i −0.809017 0.587785i 0
475.1 −1.34500 0.437016i −1.61803 + 1.17557i 1.61803 + 1.17557i 0 2.68999 0.874032i 0 −1.66251 2.28825i 0.309017 0.951057i 0
475.2 1.34500 + 0.437016i −1.61803 + 1.17557i 1.61803 + 1.17557i 0 −2.68999 + 0.874032i 0 1.66251 + 2.28825i 0.309017 0.951057i 0
699.1 −1.34500 + 0.437016i −1.61803 1.17557i 1.61803 1.17557i 0 2.68999 + 0.874032i 0 −1.66251 + 2.28825i 0.309017 + 0.951057i 0
699.2 1.34500 0.437016i −1.61803 1.17557i 1.61803 1.17557i 0 −2.68999 0.874032i 0 1.66251 2.28825i 0.309017 + 0.951057i 0
723.1 −0.831254 1.14412i 0.618034 + 1.90211i −0.618034 + 1.90211i 0 1.66251 2.28825i 0 2.68999 0.874032i −0.809017 + 0.587785i 0
723.2 0.831254 + 1.14412i 0.618034 + 1.90211i −0.618034 + 1.90211i 0 −1.66251 + 2.28825i 0 −2.68999 + 0.874032i −0.809017 + 0.587785i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 403.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by Q(2)\Q(\sqrt{-2})
11.b odd 2 1 inner
11.c even 5 3 inner
11.d odd 10 3 inner
88.g even 2 1 inner
88.k even 10 3 inner
88.l odd 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 968.2.k.a 8
8.d odd 2 1 CM 968.2.k.a 8
11.b odd 2 1 inner 968.2.k.a 8
11.c even 5 1 88.2.g.a 2
11.c even 5 3 inner 968.2.k.a 8
11.d odd 10 1 88.2.g.a 2
11.d odd 10 3 inner 968.2.k.a 8
33.f even 10 1 792.2.h.b 2
33.h odd 10 1 792.2.h.b 2
44.g even 10 1 352.2.g.a 2
44.h odd 10 1 352.2.g.a 2
88.g even 2 1 inner 968.2.k.a 8
88.k even 10 1 88.2.g.a 2
88.k even 10 3 inner 968.2.k.a 8
88.l odd 10 1 88.2.g.a 2
88.l odd 10 3 inner 968.2.k.a 8
88.o even 10 1 352.2.g.a 2
88.p odd 10 1 352.2.g.a 2
132.n odd 10 1 3168.2.h.b 2
132.o even 10 1 3168.2.h.b 2
176.u odd 20 2 2816.2.e.d 4
176.v odd 20 2 2816.2.e.d 4
176.w even 20 2 2816.2.e.d 4
176.x even 20 2 2816.2.e.d 4
264.r odd 10 1 792.2.h.b 2
264.t odd 10 1 3168.2.h.b 2
264.u even 10 1 3168.2.h.b 2
264.w even 10 1 792.2.h.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
88.2.g.a 2 11.c even 5 1
88.2.g.a 2 11.d odd 10 1
88.2.g.a 2 88.k even 10 1
88.2.g.a 2 88.l odd 10 1
352.2.g.a 2 44.g even 10 1
352.2.g.a 2 44.h odd 10 1
352.2.g.a 2 88.o even 10 1
352.2.g.a 2 88.p odd 10 1
792.2.h.b 2 33.f even 10 1
792.2.h.b 2 33.h odd 10 1
792.2.h.b 2 264.r odd 10 1
792.2.h.b 2 264.w even 10 1
968.2.k.a 8 1.a even 1 1 trivial
968.2.k.a 8 8.d odd 2 1 CM
968.2.k.a 8 11.b odd 2 1 inner
968.2.k.a 8 11.c even 5 3 inner
968.2.k.a 8 11.d odd 10 3 inner
968.2.k.a 8 88.g even 2 1 inner
968.2.k.a 8 88.k even 10 3 inner
968.2.k.a 8 88.l odd 10 3 inner
2816.2.e.d 4 176.u odd 20 2
2816.2.e.d 4 176.v odd 20 2
2816.2.e.d 4 176.w even 20 2
2816.2.e.d 4 176.x even 20 2
3168.2.h.b 2 132.n odd 10 1
3168.2.h.b 2 132.o even 10 1
3168.2.h.b 2 264.t odd 10 1
3168.2.h.b 2 264.u even 10 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(968,[χ])S_{2}^{\mathrm{new}}(968, [\chi]):

T34+2T33+4T32+8T3+16 T_{3}^{4} + 2T_{3}^{3} + 4T_{3}^{2} + 8T_{3} + 16 Copy content Toggle raw display
T17832T176+1024T17432768T172+1048576 T_{17}^{8} - 32T_{17}^{6} + 1024T_{17}^{4} - 32768T_{17}^{2} + 1048576 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T82T6++16 T^{8} - 2 T^{6} + \cdots + 16 Copy content Toggle raw display
33 (T4+2T3+4T2++16)2 (T^{4} + 2 T^{3} + 4 T^{2} + \cdots + 16)^{2} Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8 T^{8} Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 T832T6++1048576 T^{8} - 32 T^{6} + \cdots + 1048576 Copy content Toggle raw display
1919 T872T6++26873856 T^{8} - 72 T^{6} + \cdots + 26873856 Copy content Toggle raw display
2323 T8 T^{8} Copy content Toggle raw display
2929 T8 T^{8} Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 T8 T^{8} Copy content Toggle raw display
4141 T8128T6++268435456 T^{8} - 128 T^{6} + \cdots + 268435456 Copy content Toggle raw display
4343 (T2+72)4 (T^{2} + 72)^{4} Copy content Toggle raw display
4747 T8 T^{8} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 (T46T3++1296)2 (T^{4} - 6 T^{3} + \cdots + 1296)^{2} Copy content Toggle raw display
6161 T8 T^{8} Copy content Toggle raw display
6767 (T14)8 (T - 14)^{8} Copy content Toggle raw display
7171 T8 T^{8} Copy content Toggle raw display
7373 T8++6879707136 T^{8} + \cdots + 6879707136 Copy content Toggle raw display
7979 T8 T^{8} Copy content Toggle raw display
8383 T88T6++4096 T^{8} - 8 T^{6} + \cdots + 4096 Copy content Toggle raw display
8989 (T18)8 (T - 18)^{8} Copy content Toggle raw display
9797 (T4+10T3++10000)2 (T^{4} + 10 T^{3} + \cdots + 10000)^{2} Copy content Toggle raw display
show more
show less