Properties

Label 2-9747-1.1-c1-0-39
Degree $2$
Conductor $9747$
Sign $1$
Analytic cond. $77.8301$
Root an. cond. $8.82214$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.49·2-s + 4.24·4-s + 1.07·5-s − 0.193·7-s − 5.61·8-s − 2.67·10-s − 0.571·11-s − 5.68·13-s + 0.483·14-s + 5.54·16-s − 2.04·17-s + 4.54·20-s + 1.42·22-s + 1.55·23-s − 3.85·25-s + 14.2·26-s − 0.822·28-s − 6.09·29-s − 5.86·31-s − 2.62·32-s + 5.11·34-s − 0.207·35-s − 9.36·37-s − 6.01·40-s + 1.92·41-s − 3.21·43-s − 2.42·44-s + ⋯
L(s)  = 1  − 1.76·2-s + 2.12·4-s + 0.478·5-s − 0.0731·7-s − 1.98·8-s − 0.846·10-s − 0.172·11-s − 1.57·13-s + 0.129·14-s + 1.38·16-s − 0.496·17-s + 1.01·20-s + 0.304·22-s + 0.324·23-s − 0.770·25-s + 2.78·26-s − 0.155·28-s − 1.13·29-s − 1.05·31-s − 0.463·32-s + 0.876·34-s − 0.0350·35-s − 1.53·37-s − 0.950·40-s + 0.301·41-s − 0.489·43-s − 0.366·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9747 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9747 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9747\)    =    \(3^{3} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(77.8301\)
Root analytic conductor: \(8.82214\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9747,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3839317187\)
\(L(\frac12)\) \(\approx\) \(0.3839317187\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 \)
good2 \( 1 + 2.49T + 2T^{2} \)
5 \( 1 - 1.07T + 5T^{2} \)
7 \( 1 + 0.193T + 7T^{2} \)
11 \( 1 + 0.571T + 11T^{2} \)
13 \( 1 + 5.68T + 13T^{2} \)
17 \( 1 + 2.04T + 17T^{2} \)
23 \( 1 - 1.55T + 23T^{2} \)
29 \( 1 + 6.09T + 29T^{2} \)
31 \( 1 + 5.86T + 31T^{2} \)
37 \( 1 + 9.36T + 37T^{2} \)
41 \( 1 - 1.92T + 41T^{2} \)
43 \( 1 + 3.21T + 43T^{2} \)
47 \( 1 - 10.6T + 47T^{2} \)
53 \( 1 - 7.69T + 53T^{2} \)
59 \( 1 + 11.7T + 59T^{2} \)
61 \( 1 - 8.02T + 61T^{2} \)
67 \( 1 - 6.74T + 67T^{2} \)
71 \( 1 - 7.00T + 71T^{2} \)
73 \( 1 + 8.07T + 73T^{2} \)
79 \( 1 - 4.88T + 79T^{2} \)
83 \( 1 + 6.02T + 83T^{2} \)
89 \( 1 + 17.5T + 89T^{2} \)
97 \( 1 - 7.59T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72706013780863591489809382121, −7.12856760525456083929871890567, −6.78657232941965838656472494917, −5.73894502813851500377750460279, −5.21251334407420818500896986392, −4.10583917995621105616389982261, −2.99179472791759598116196344897, −2.16654137930229823688513105428, −1.72036054104962100415894731557, −0.36861468132550081678006057678, 0.36861468132550081678006057678, 1.72036054104962100415894731557, 2.16654137930229823688513105428, 2.99179472791759598116196344897, 4.10583917995621105616389982261, 5.21251334407420818500896986392, 5.73894502813851500377750460279, 6.78657232941965838656472494917, 7.12856760525456083929871890567, 7.72706013780863591489809382121

Graph of the $Z$-function along the critical line