Properties

Label 9747.2.a.bm
Level $9747$
Weight $2$
Character orbit 9747.a
Self dual yes
Analytic conductor $77.830$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9747,2,Mod(1,9747)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9747, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9747.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9747 = 3^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9747.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.8301868501\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.54265221.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 7x^{4} + 4x^{3} + 12x^{2} - 3x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 513)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + \beta_1) q^{4} + (\beta_{5} + 1) q^{5} + (\beta_{4} - \beta_{3} + 1) q^{7} + ( - \beta_{3} - \beta_{2} - \beta_1) q^{8} + ( - \beta_{4} - \beta_1) q^{10} + (\beta_{4} - \beta_{2} + 1) q^{11}+ \cdots + (\beta_{5} - 3 \beta_{4} + \beta_{3} + \cdots + 7) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} + 3 q^{4} + 5 q^{5} + q^{7} - 6 q^{8} + q^{10} + 2 q^{11} - 5 q^{13} - 2 q^{14} - 3 q^{16} + 10 q^{17} + q^{20} - 4 q^{22} + 3 q^{23} + 5 q^{25} + q^{26} + 2 q^{28} + 6 q^{29} + 2 q^{31}+ \cdots + 59 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 7x^{4} + 4x^{3} + 12x^{2} - 3x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 5\nu^{2} + 2\nu + 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - \nu^{4} - 6\nu^{3} + 3\nu^{2} + 7\nu - 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 6\beta_{2} + 8\beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + \beta_{4} + 7\beta_{3} + 9\beta_{2} + 28\beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.49945
1.58457
0.657313
−0.433013
−1.38041
−1.92790
−2.49945 0 4.24724 1.07044 0 −0.193560 −5.61687 0 −2.67551
1.2 −1.58457 0 0.510849 −1.56181 0 −0.188849 2.35966 0 2.47479
1.3 −0.657313 0 −1.56794 4.12941 0 3.83431 2.34525 0 −2.71431
1.4 0.433013 0 −1.81250 −2.03183 0 −1.15054 −1.65086 0 −0.879808
1.5 1.38041 0 −0.0944649 3.19283 0 −5.01270 −2.89122 0 4.40742
1.6 1.92790 0 1.71681 0.200956 0 3.71133 −0.545959 0 0.387423
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9747.2.a.bm 6
3.b odd 2 1 9747.2.a.br 6
19.b odd 2 1 9747.2.a.bs 6
19.d odd 6 2 513.2.f.f 12
57.d even 2 1 9747.2.a.bl 6
57.f even 6 2 513.2.f.h yes 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
513.2.f.f 12 19.d odd 6 2
513.2.f.h yes 12 57.f even 6 2
9747.2.a.bl 6 57.d even 2 1
9747.2.a.bm 6 1.a even 1 1 trivial
9747.2.a.br 6 3.b odd 2 1
9747.2.a.bs 6 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9747))\):

\( T_{2}^{6} + T_{2}^{5} - 7T_{2}^{4} - 4T_{2}^{3} + 12T_{2}^{2} + 3T_{2} - 3 \) Copy content Toggle raw display
\( T_{5}^{6} - 5T_{5}^{5} - 5T_{5}^{4} + 36T_{5}^{3} + 9T_{5}^{2} - 48T_{5} + 9 \) Copy content Toggle raw display
\( T_{7}^{6} - T_{7}^{5} - 27T_{7}^{4} + 34T_{7}^{3} + 98T_{7}^{2} + 33T_{7} + 3 \) Copy content Toggle raw display
\( T_{13}^{6} + 5T_{13}^{5} - 30T_{13}^{4} - 127T_{13}^{3} + 145T_{13}^{2} + 126T_{13} - 39 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + T^{5} - 7 T^{4} + \cdots - 3 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 5 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{6} - T^{5} - 27 T^{4} + \cdots + 3 \) Copy content Toggle raw display
$11$ \( T^{6} - 2 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$13$ \( T^{6} + 5 T^{5} + \cdots - 39 \) Copy content Toggle raw display
$17$ \( T^{6} - 10 T^{5} + \cdots + 27 \) Copy content Toggle raw display
$19$ \( T^{6} \) Copy content Toggle raw display
$23$ \( T^{6} - 3 T^{5} + \cdots - 219 \) Copy content Toggle raw display
$29$ \( T^{6} - 6 T^{5} + \cdots - 933 \) Copy content Toggle raw display
$31$ \( T^{6} - 2 T^{5} + \cdots + 267 \) Copy content Toggle raw display
$37$ \( T^{6} + 13 T^{5} + \cdots - 6339 \) Copy content Toggle raw display
$41$ \( T^{6} - 13 T^{5} + \cdots + 27 \) Copy content Toggle raw display
$43$ \( T^{6} - 3 T^{5} + \cdots - 1271 \) Copy content Toggle raw display
$47$ \( T^{6} - 18 T^{5} + \cdots - 14823 \) Copy content Toggle raw display
$53$ \( T^{6} - T^{5} + \cdots + 2943 \) Copy content Toggle raw display
$59$ \( T^{6} + 11 T^{5} + \cdots + 16641 \) Copy content Toggle raw display
$61$ \( T^{6} - 13 T^{5} + \cdots + 1699 \) Copy content Toggle raw display
$67$ \( T^{6} - 9 T^{5} + \cdots + 3133 \) Copy content Toggle raw display
$71$ \( T^{6} - 6 T^{5} + \cdots - 21951 \) Copy content Toggle raw display
$73$ \( T^{6} - 15 T^{5} + \cdots + 5639 \) Copy content Toggle raw display
$79$ \( T^{6} + 13 T^{5} + \cdots - 122697 \) Copy content Toggle raw display
$83$ \( T^{6} - 8 T^{5} + \cdots - 681291 \) Copy content Toggle raw display
$89$ \( T^{6} + 29 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$97$ \( T^{6} - 20 T^{5} + \cdots - 81959 \) Copy content Toggle raw display
show more
show less