L(s) = 1 | + (−0.251 − 0.564i)2-s + (0.207 − 0.978i)3-s + (0.413 − 0.459i)4-s + (−0.587 + 0.809i)5-s + (−0.604 + 0.128i)6-s + (−0.5 − 0.866i)7-s + (−0.951 − 0.309i)8-s + (−0.913 − 0.406i)9-s + (0.604 + 0.128i)10-s + (0.251 + 0.564i)11-s + (−0.363 − 0.500i)12-s + (0.809 − 0.587i)13-s + (−0.363 + 0.5i)14-s + (0.669 + 0.743i)15-s + (−0.207 − 0.978i)17-s + 0.618i·18-s + ⋯ |
L(s) = 1 | + (−0.251 − 0.564i)2-s + (0.207 − 0.978i)3-s + (0.413 − 0.459i)4-s + (−0.587 + 0.809i)5-s + (−0.604 + 0.128i)6-s + (−0.5 − 0.866i)7-s + (−0.951 − 0.309i)8-s + (−0.913 − 0.406i)9-s + (0.604 + 0.128i)10-s + (0.251 + 0.564i)11-s + (−0.363 − 0.500i)12-s + (0.809 − 0.587i)13-s + (−0.363 + 0.5i)14-s + (0.669 + 0.743i)15-s + (−0.207 − 0.978i)17-s + 0.618i·18-s + ⋯ |
Λ(s)=(=(975s/2ΓC(s)L(s)(−0.943+0.332i)Λ(1−s)
Λ(s)=(=(975s/2ΓC(s)L(s)(−0.943+0.332i)Λ(1−s)
Degree: |
2 |
Conductor: |
975
= 3⋅52⋅13
|
Sign: |
−0.943+0.332i
|
Analytic conductor: |
0.486588 |
Root analytic conductor: |
0.697558 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ975(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 975, ( :0), −0.943+0.332i)
|
Particular Values
L(21) |
≈ |
0.7844910157 |
L(21) |
≈ |
0.7844910157 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.207+0.978i)T |
| 5 | 1+(0.587−0.809i)T |
| 13 | 1+(−0.809+0.587i)T |
good | 2 | 1+(0.251+0.564i)T+(−0.669+0.743i)T2 |
| 7 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 11 | 1+(−0.251−0.564i)T+(−0.669+0.743i)T2 |
| 17 | 1+(0.207+0.978i)T+(−0.913+0.406i)T2 |
| 19 | 1+(0.978−0.207i)T+(0.913−0.406i)T2 |
| 23 | 1+(0.406+0.913i)T+(−0.669+0.743i)T2 |
| 29 | 1+(−0.913−0.406i)T2 |
| 31 | 1+(−0.809−0.587i)T2 |
| 37 | 1+(−0.104−0.994i)T+(−0.978+0.207i)T2 |
| 41 | 1+(−0.994+0.104i)T+(0.978−0.207i)T2 |
| 43 | 1+(−0.809−1.40i)T+(−0.5+0.866i)T2 |
| 47 | 1+(−1.53+0.5i)T+(0.809−0.587i)T2 |
| 53 | 1+(−0.587+0.190i)T+(0.809−0.587i)T2 |
| 59 | 1+(−0.406+0.913i)T+(−0.669−0.743i)T2 |
| 61 | 1+(0.104−0.994i)T+(−0.978−0.207i)T2 |
| 67 | 1+(1.08+1.20i)T+(−0.104+0.994i)T2 |
| 71 | 1+(0.104+0.994i)T2 |
| 73 | 1+(−0.809−0.587i)T+(0.309+0.951i)T2 |
| 79 | 1+(−0.809+0.587i)T2 |
| 83 | 1+(0.951+0.309i)T+(0.809+0.587i)T2 |
| 89 | 1+(−0.406−0.913i)T+(−0.669+0.743i)T2 |
| 97 | 1+(−1.08+1.20i)T+(−0.104−0.994i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.09907407730014913519378227822, −9.069074291870934160609035036857, −8.050144267686844568044041141087, −7.17671030889853652791174909802, −6.60990172781766522506778373710, −5.95387989751729011334127145671, −4.17459676000513342035857318275, −3.10819767468947019993254109937, −2.28420086772296671246306701482, −0.77279085316847595321165205503,
2.34123269494058242456568465982, 3.64624413130197759045229735645, 4.16697920058513164205378931576, 5.74176194468989210122297078265, 6.02870737380203440423285315919, 7.40884524532634466958871710220, 8.374354746870385045982725337037, 8.919643646920828908239974939347, 9.189715110245934912105592950732, 10.65733265960111368930100550141