Properties

Label 975.1.cj.a
Level 975975
Weight 11
Character orbit 975.cj
Analytic conductor 0.4870.487
Analytic rank 00
Dimension 1616
Projective image A5A_{5}
CM/RM no
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,1,Mod(146,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([15, 18, 10]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.146");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 975=35213 975 = 3 \cdot 5^{2} \cdot 13
Weight: k k == 1 1
Character orbit: [χ][\chi] == 975.cj (of order 3030, degree 88, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4865883873170.486588387317
Analytic rank: 00
Dimension: 1616
Relative dimension: 22 over Q(ζ30)\Q(\zeta_{30})
Coefficient field: Q(ζ60)\Q(\zeta_{60})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+x14x10x8x6+x2+1 x^{16} + x^{14} - x^{10} - x^{8} - x^{6} + x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: A5A_{5}
Projective field: Galois closure of 5.1.594140625.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ6017ζ6011)q2+ζ6023q3+(ζ6028+ζ604)q4+ζ609q5+(ζ6010+ζ604)q6ζ6010q7++(ζ6027ζ603)q99+O(q100) q + (\zeta_{60}^{17} - \zeta_{60}^{11}) q^{2} + \zeta_{60}^{23} q^{3} + ( - \zeta_{60}^{28} + \cdots - \zeta_{60}^{4}) q^{4} + \zeta_{60}^{9} q^{5} + ( - \zeta_{60}^{10} + \zeta_{60}^{4}) q^{6} - \zeta_{60}^{10} q^{7} + \cdots + ( - \zeta_{60}^{27} - \zeta_{60}^{3}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q6q46q68q72q9+6q10+4q13+2q15+2q19+8q228q24+4q256q28+6q338q344q362q37+4q406q42+4q43+4q97+O(q100) 16 q - 6 q^{4} - 6 q^{6} - 8 q^{7} - 2 q^{9} + 6 q^{10} + 4 q^{13} + 2 q^{15} + 2 q^{19} + 8 q^{22} - 8 q^{24} + 4 q^{25} - 6 q^{28} + 6 q^{33} - 8 q^{34} - 4 q^{36} - 2 q^{37} + 4 q^{40} - 6 q^{42} + 4 q^{43}+ \cdots - 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/975Z)×\left(\mathbb{Z}/975\mathbb{Z}\right)^\times.

nn 301301 326326 352352
χ(n)\chi(n) ζ6010-\zeta_{60}^{10} 1-1 ζ6018-\zeta_{60}^{18}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
146.1
−0.207912 + 0.978148i
0.207912 0.978148i
0.406737 0.913545i
−0.406737 + 0.913545i
0.994522 0.104528i
−0.994522 + 0.104528i
0.994522 + 0.104528i
−0.994522 0.104528i
0.406737 + 0.913545i
−0.406737 0.913545i
−0.207912 0.978148i
0.207912 + 0.978148i
−0.743145 + 0.669131i
0.743145 0.669131i
−0.743145 0.669131i
0.743145 + 0.669131i
−0.336408 1.58268i −0.994522 0.104528i −1.47815 + 0.658114i −0.951057 0.309017i 0.169131 + 1.60917i −0.500000 + 0.866025i 0.587785 + 0.809017i 0.978148 + 0.207912i −0.169131 + 1.60917i
146.2 0.336408 + 1.58268i 0.994522 + 0.104528i −1.47815 + 0.658114i 0.951057 + 0.309017i 0.169131 + 1.60917i −0.500000 + 0.866025i −0.587785 0.809017i 0.978148 + 0.207912i −0.169131 + 1.60917i
191.1 −0.251377 0.564602i 0.207912 0.978148i 0.413545 0.459289i −0.587785 + 0.809017i −0.604528 + 0.128496i −0.500000 0.866025i −0.951057 0.309017i −0.913545 0.406737i 0.604528 + 0.128496i
191.2 0.251377 + 0.564602i −0.207912 + 0.978148i 0.413545 0.459289i 0.587785 0.809017i −0.604528 + 0.128496i −0.500000 0.866025i 0.951057 + 0.309017i −0.913545 0.406737i 0.604528 + 0.128496i
341.1 −0.614648 0.0646021i −0.743145 0.669131i −0.604528 0.128496i 0.587785 0.809017i 0.413545 + 0.459289i −0.500000 + 0.866025i 0.951057 + 0.309017i 0.104528 + 0.994522i −0.413545 + 0.459289i
341.2 0.614648 + 0.0646021i 0.743145 + 0.669131i −0.604528 0.128496i −0.587785 + 0.809017i 0.413545 + 0.459289i −0.500000 + 0.866025i −0.951057 0.309017i 0.104528 + 0.994522i −0.413545 + 0.459289i
386.1 −0.614648 + 0.0646021i −0.743145 + 0.669131i −0.604528 + 0.128496i 0.587785 + 0.809017i 0.413545 0.459289i −0.500000 0.866025i 0.951057 0.309017i 0.104528 0.994522i −0.413545 0.459289i
386.2 0.614648 0.0646021i 0.743145 0.669131i −0.604528 + 0.128496i −0.587785 0.809017i 0.413545 0.459289i −0.500000 0.866025i −0.951057 + 0.309017i 0.104528 0.994522i −0.413545 0.459289i
536.1 −0.251377 + 0.564602i 0.207912 + 0.978148i 0.413545 + 0.459289i −0.587785 0.809017i −0.604528 0.128496i −0.500000 + 0.866025i −0.951057 + 0.309017i −0.913545 + 0.406737i 0.604528 0.128496i
536.2 0.251377 0.564602i −0.207912 0.978148i 0.413545 + 0.459289i 0.587785 + 0.809017i −0.604528 0.128496i −0.500000 + 0.866025i 0.951057 0.309017i −0.913545 + 0.406737i 0.604528 0.128496i
581.1 −0.336408 + 1.58268i −0.994522 + 0.104528i −1.47815 0.658114i −0.951057 + 0.309017i 0.169131 1.60917i −0.500000 0.866025i 0.587785 0.809017i 0.978148 0.207912i −0.169131 1.60917i
581.2 0.336408 1.58268i 0.994522 0.104528i −1.47815 0.658114i 0.951057 0.309017i 0.169131 1.60917i −0.500000 0.866025i −0.587785 + 0.809017i 0.978148 0.207912i −0.169131 1.60917i
731.1 −1.20243 1.08268i 0.406737 0.913545i 0.169131 + 1.60917i −0.951057 + 0.309017i −1.47815 + 0.658114i −0.500000 + 0.866025i 0.587785 0.809017i −0.669131 0.743145i 1.47815 + 0.658114i
731.2 1.20243 + 1.08268i −0.406737 + 0.913545i 0.169131 + 1.60917i 0.951057 0.309017i −1.47815 + 0.658114i −0.500000 + 0.866025i −0.587785 + 0.809017i −0.669131 0.743145i 1.47815 + 0.658114i
971.1 −1.20243 + 1.08268i 0.406737 + 0.913545i 0.169131 1.60917i −0.951057 0.309017i −1.47815 0.658114i −0.500000 0.866025i 0.587785 + 0.809017i −0.669131 + 0.743145i 1.47815 0.658114i
971.2 1.20243 1.08268i −0.406737 0.913545i 0.169131 1.60917i 0.951057 + 0.309017i −1.47815 0.658114i −0.500000 0.866025i −0.587785 0.809017i −0.669131 + 0.743145i 1.47815 0.658114i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 146.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.c even 3 1 inner
25.d even 5 1 inner
39.i odd 6 1 inner
75.j odd 10 1 inner
325.y even 15 1 inner
975.cj odd 30 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.1.cj.a 16
3.b odd 2 1 inner 975.1.cj.a 16
13.c even 3 1 inner 975.1.cj.a 16
25.d even 5 1 inner 975.1.cj.a 16
39.i odd 6 1 inner 975.1.cj.a 16
75.j odd 10 1 inner 975.1.cj.a 16
325.y even 15 1 inner 975.1.cj.a 16
975.cj odd 30 1 inner 975.1.cj.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
975.1.cj.a 16 1.a even 1 1 trivial
975.1.cj.a 16 3.b odd 2 1 inner
975.1.cj.a 16 13.c even 3 1 inner
975.1.cj.a 16 25.d even 5 1 inner
975.1.cj.a 16 39.i odd 6 1 inner
975.1.cj.a 16 75.j odd 10 1 inner
975.1.cj.a 16 325.y even 15 1 inner
975.1.cj.a 16 975.cj odd 30 1 inner

Hecke kernels

This newform subspace is the entire newspace S1new(975,[χ])S_{1}^{\mathrm{new}}(975, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16+4T14++1 T^{16} + 4 T^{14} + \cdots + 1 Copy content Toggle raw display
33 T16+T14++1 T^{16} + T^{14} + \cdots + 1 Copy content Toggle raw display
55 (T8T6+T4++1)2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
77 (T2+T+1)8 (T^{2} + T + 1)^{8} Copy content Toggle raw display
1111 T16+4T14++1 T^{16} + 4 T^{14} + \cdots + 1 Copy content Toggle raw display
1313 (T4T3+T2++1)4 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{4} Copy content Toggle raw display
1717 T16+T14++1 T^{16} + T^{14} + \cdots + 1 Copy content Toggle raw display
1919 (T8T7+T5++1)2 (T^{8} - T^{7} + T^{5} + \cdots + 1)^{2} Copy content Toggle raw display
2323 T16+T14++1 T^{16} + T^{14} + \cdots + 1 Copy content Toggle raw display
2929 T16 T^{16} Copy content Toggle raw display
3131 T16 T^{16} Copy content Toggle raw display
3737 (T8+T7T5++1)2 (T^{8} + T^{7} - T^{5} + \cdots + 1)^{2} Copy content Toggle raw display
4141 T16+T14++1 T^{16} + T^{14} + \cdots + 1 Copy content Toggle raw display
4343 (T4T3+2T2++1)4 (T^{4} - T^{3} + 2 T^{2} + \cdots + 1)^{4} Copy content Toggle raw display
4747 (T84T6+6T4++1)2 (T^{8} - 4 T^{6} + 6 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
5353 (T8+T6+6T4++1)2 (T^{8} + T^{6} + 6 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
5959 T16+T14++1 T^{16} + T^{14} + \cdots + 1 Copy content Toggle raw display
6161 (T8T7+T5++1)2 (T^{8} - T^{7} + T^{5} + \cdots + 1)^{2} Copy content Toggle raw display
6767 (T82T72T5++1)2 (T^{8} - 2 T^{7} - 2 T^{5} + \cdots + 1)^{2} Copy content Toggle raw display
7171 T16 T^{16} Copy content Toggle raw display
7373 (T4T3+T2++1)4 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{4} Copy content Toggle raw display
7979 T16 T^{16} Copy content Toggle raw display
8383 (T8T6+T4++1)2 (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
8989 T16+T14++1 T^{16} + T^{14} + \cdots + 1 Copy content Toggle raw display
9797 (T8+2T7+2T5++1)2 (T^{8} + 2 T^{7} + 2 T^{5} + \cdots + 1)^{2} Copy content Toggle raw display
show more
show less