Properties

Label 975.1.cj.a
Level $975$
Weight $1$
Character orbit 975.cj
Analytic conductor $0.487$
Analytic rank $0$
Dimension $16$
Projective image $A_{5}$
CM/RM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,1,Mod(146,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([15, 18, 10]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.146");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 975.cj (of order \(30\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.486588387317\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{30})\)
Coefficient field: \(\Q(\zeta_{60})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + x^{14} - x^{10} - x^{8} - x^{6} + x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{5}\)
Projective field: Galois closure of 5.1.594140625.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{60}^{17} - \zeta_{60}^{11}) q^{2} + \zeta_{60}^{23} q^{3} + ( - \zeta_{60}^{28} + \cdots - \zeta_{60}^{4}) q^{4} + \zeta_{60}^{9} q^{5} + ( - \zeta_{60}^{10} + \zeta_{60}^{4}) q^{6} - \zeta_{60}^{10} q^{7} + \cdots + ( - \zeta_{60}^{27} - \zeta_{60}^{3}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} - 6 q^{6} - 8 q^{7} - 2 q^{9} + 6 q^{10} + 4 q^{13} + 2 q^{15} + 2 q^{19} + 8 q^{22} - 8 q^{24} + 4 q^{25} - 6 q^{28} + 6 q^{33} - 8 q^{34} - 4 q^{36} - 2 q^{37} + 4 q^{40} - 6 q^{42} + 4 q^{43}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(-\zeta_{60}^{10}\) \(-1\) \(-\zeta_{60}^{18}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
146.1
−0.207912 + 0.978148i
0.207912 0.978148i
0.406737 0.913545i
−0.406737 + 0.913545i
0.994522 0.104528i
−0.994522 + 0.104528i
0.994522 + 0.104528i
−0.994522 0.104528i
0.406737 + 0.913545i
−0.406737 0.913545i
−0.207912 0.978148i
0.207912 + 0.978148i
−0.743145 + 0.669131i
0.743145 0.669131i
−0.743145 0.669131i
0.743145 + 0.669131i
−0.336408 1.58268i −0.994522 0.104528i −1.47815 + 0.658114i −0.951057 0.309017i 0.169131 + 1.60917i −0.500000 + 0.866025i 0.587785 + 0.809017i 0.978148 + 0.207912i −0.169131 + 1.60917i
146.2 0.336408 + 1.58268i 0.994522 + 0.104528i −1.47815 + 0.658114i 0.951057 + 0.309017i 0.169131 + 1.60917i −0.500000 + 0.866025i −0.587785 0.809017i 0.978148 + 0.207912i −0.169131 + 1.60917i
191.1 −0.251377 0.564602i 0.207912 0.978148i 0.413545 0.459289i −0.587785 + 0.809017i −0.604528 + 0.128496i −0.500000 0.866025i −0.951057 0.309017i −0.913545 0.406737i 0.604528 + 0.128496i
191.2 0.251377 + 0.564602i −0.207912 + 0.978148i 0.413545 0.459289i 0.587785 0.809017i −0.604528 + 0.128496i −0.500000 0.866025i 0.951057 + 0.309017i −0.913545 0.406737i 0.604528 + 0.128496i
341.1 −0.614648 0.0646021i −0.743145 0.669131i −0.604528 0.128496i 0.587785 0.809017i 0.413545 + 0.459289i −0.500000 + 0.866025i 0.951057 + 0.309017i 0.104528 + 0.994522i −0.413545 + 0.459289i
341.2 0.614648 + 0.0646021i 0.743145 + 0.669131i −0.604528 0.128496i −0.587785 + 0.809017i 0.413545 + 0.459289i −0.500000 + 0.866025i −0.951057 0.309017i 0.104528 + 0.994522i −0.413545 + 0.459289i
386.1 −0.614648 + 0.0646021i −0.743145 + 0.669131i −0.604528 + 0.128496i 0.587785 + 0.809017i 0.413545 0.459289i −0.500000 0.866025i 0.951057 0.309017i 0.104528 0.994522i −0.413545 0.459289i
386.2 0.614648 0.0646021i 0.743145 0.669131i −0.604528 + 0.128496i −0.587785 0.809017i 0.413545 0.459289i −0.500000 0.866025i −0.951057 + 0.309017i 0.104528 0.994522i −0.413545 0.459289i
536.1 −0.251377 + 0.564602i 0.207912 + 0.978148i 0.413545 + 0.459289i −0.587785 0.809017i −0.604528 0.128496i −0.500000 + 0.866025i −0.951057 + 0.309017i −0.913545 + 0.406737i 0.604528 0.128496i
536.2 0.251377 0.564602i −0.207912 0.978148i 0.413545 + 0.459289i 0.587785 + 0.809017i −0.604528 0.128496i −0.500000 + 0.866025i 0.951057 0.309017i −0.913545 + 0.406737i 0.604528 0.128496i
581.1 −0.336408 + 1.58268i −0.994522 + 0.104528i −1.47815 0.658114i −0.951057 + 0.309017i 0.169131 1.60917i −0.500000 0.866025i 0.587785 0.809017i 0.978148 0.207912i −0.169131 1.60917i
581.2 0.336408 1.58268i 0.994522 0.104528i −1.47815 0.658114i 0.951057 0.309017i 0.169131 1.60917i −0.500000 0.866025i −0.587785 + 0.809017i 0.978148 0.207912i −0.169131 1.60917i
731.1 −1.20243 1.08268i 0.406737 0.913545i 0.169131 + 1.60917i −0.951057 + 0.309017i −1.47815 + 0.658114i −0.500000 + 0.866025i 0.587785 0.809017i −0.669131 0.743145i 1.47815 + 0.658114i
731.2 1.20243 + 1.08268i −0.406737 + 0.913545i 0.169131 + 1.60917i 0.951057 0.309017i −1.47815 + 0.658114i −0.500000 + 0.866025i −0.587785 + 0.809017i −0.669131 0.743145i 1.47815 + 0.658114i
971.1 −1.20243 + 1.08268i 0.406737 + 0.913545i 0.169131 1.60917i −0.951057 0.309017i −1.47815 0.658114i −0.500000 0.866025i 0.587785 + 0.809017i −0.669131 + 0.743145i 1.47815 0.658114i
971.2 1.20243 1.08268i −0.406737 0.913545i 0.169131 1.60917i 0.951057 + 0.309017i −1.47815 0.658114i −0.500000 0.866025i −0.587785 0.809017i −0.669131 + 0.743145i 1.47815 0.658114i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 146.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.c even 3 1 inner
25.d even 5 1 inner
39.i odd 6 1 inner
75.j odd 10 1 inner
325.y even 15 1 inner
975.cj odd 30 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.1.cj.a 16
3.b odd 2 1 inner 975.1.cj.a 16
13.c even 3 1 inner 975.1.cj.a 16
25.d even 5 1 inner 975.1.cj.a 16
39.i odd 6 1 inner 975.1.cj.a 16
75.j odd 10 1 inner 975.1.cj.a 16
325.y even 15 1 inner 975.1.cj.a 16
975.cj odd 30 1 inner 975.1.cj.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
975.1.cj.a 16 1.a even 1 1 trivial
975.1.cj.a 16 3.b odd 2 1 inner
975.1.cj.a 16 13.c even 3 1 inner
975.1.cj.a 16 25.d even 5 1 inner
975.1.cj.a 16 39.i odd 6 1 inner
975.1.cj.a 16 75.j odd 10 1 inner
975.1.cj.a 16 325.y even 15 1 inner
975.1.cj.a 16 975.cj odd 30 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(975, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} + 4 T^{14} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{16} + T^{14} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + T + 1)^{8} \) Copy content Toggle raw display
$11$ \( T^{16} + 4 T^{14} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{16} + T^{14} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( (T^{8} - T^{7} + T^{5} + \cdots + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{16} + T^{14} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{16} \) Copy content Toggle raw display
$31$ \( T^{16} \) Copy content Toggle raw display
$37$ \( (T^{8} + T^{7} - T^{5} + \cdots + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{16} + T^{14} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( (T^{4} - T^{3} + 2 T^{2} + \cdots + 1)^{4} \) Copy content Toggle raw display
$47$ \( (T^{8} - 4 T^{6} + 6 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$53$ \( (T^{8} + T^{6} + 6 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{16} + T^{14} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( (T^{8} - T^{7} + T^{5} + \cdots + 1)^{2} \) Copy content Toggle raw display
$67$ \( (T^{8} - 2 T^{7} - 2 T^{5} + \cdots + 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{16} \) Copy content Toggle raw display
$73$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{4} \) Copy content Toggle raw display
$79$ \( T^{16} \) Copy content Toggle raw display
$83$ \( (T^{8} - T^{6} + T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$89$ \( T^{16} + T^{14} + \cdots + 1 \) Copy content Toggle raw display
$97$ \( (T^{8} + 2 T^{7} + 2 T^{5} + \cdots + 1)^{2} \) Copy content Toggle raw display
show more
show less