Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [975,1,Mod(146,975)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(975, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([15, 18, 10]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("975.146");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 975.cj (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 5.1.594140625.2 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
146.1 |
|
−0.336408 | − | 1.58268i | −0.994522 | − | 0.104528i | −1.47815 | + | 0.658114i | −0.951057 | − | 0.309017i | 0.169131 | + | 1.60917i | −0.500000 | + | 0.866025i | 0.587785 | + | 0.809017i | 0.978148 | + | 0.207912i | −0.169131 | + | 1.60917i | ||||||||||||||||||||||||||||||||||||||||||||||||
146.2 | 0.336408 | + | 1.58268i | 0.994522 | + | 0.104528i | −1.47815 | + | 0.658114i | 0.951057 | + | 0.309017i | 0.169131 | + | 1.60917i | −0.500000 | + | 0.866025i | −0.587785 | − | 0.809017i | 0.978148 | + | 0.207912i | −0.169131 | + | 1.60917i | |||||||||||||||||||||||||||||||||||||||||||||||||
191.1 | −0.251377 | − | 0.564602i | 0.207912 | − | 0.978148i | 0.413545 | − | 0.459289i | −0.587785 | + | 0.809017i | −0.604528 | + | 0.128496i | −0.500000 | − | 0.866025i | −0.951057 | − | 0.309017i | −0.913545 | − | 0.406737i | 0.604528 | + | 0.128496i | |||||||||||||||||||||||||||||||||||||||||||||||||
191.2 | 0.251377 | + | 0.564602i | −0.207912 | + | 0.978148i | 0.413545 | − | 0.459289i | 0.587785 | − | 0.809017i | −0.604528 | + | 0.128496i | −0.500000 | − | 0.866025i | 0.951057 | + | 0.309017i | −0.913545 | − | 0.406737i | 0.604528 | + | 0.128496i | |||||||||||||||||||||||||||||||||||||||||||||||||
341.1 | −0.614648 | − | 0.0646021i | −0.743145 | − | 0.669131i | −0.604528 | − | 0.128496i | 0.587785 | − | 0.809017i | 0.413545 | + | 0.459289i | −0.500000 | + | 0.866025i | 0.951057 | + | 0.309017i | 0.104528 | + | 0.994522i | −0.413545 | + | 0.459289i | |||||||||||||||||||||||||||||||||||||||||||||||||
341.2 | 0.614648 | + | 0.0646021i | 0.743145 | + | 0.669131i | −0.604528 | − | 0.128496i | −0.587785 | + | 0.809017i | 0.413545 | + | 0.459289i | −0.500000 | + | 0.866025i | −0.951057 | − | 0.309017i | 0.104528 | + | 0.994522i | −0.413545 | + | 0.459289i | |||||||||||||||||||||||||||||||||||||||||||||||||
386.1 | −0.614648 | + | 0.0646021i | −0.743145 | + | 0.669131i | −0.604528 | + | 0.128496i | 0.587785 | + | 0.809017i | 0.413545 | − | 0.459289i | −0.500000 | − | 0.866025i | 0.951057 | − | 0.309017i | 0.104528 | − | 0.994522i | −0.413545 | − | 0.459289i | |||||||||||||||||||||||||||||||||||||||||||||||||
386.2 | 0.614648 | − | 0.0646021i | 0.743145 | − | 0.669131i | −0.604528 | + | 0.128496i | −0.587785 | − | 0.809017i | 0.413545 | − | 0.459289i | −0.500000 | − | 0.866025i | −0.951057 | + | 0.309017i | 0.104528 | − | 0.994522i | −0.413545 | − | 0.459289i | |||||||||||||||||||||||||||||||||||||||||||||||||
536.1 | −0.251377 | + | 0.564602i | 0.207912 | + | 0.978148i | 0.413545 | + | 0.459289i | −0.587785 | − | 0.809017i | −0.604528 | − | 0.128496i | −0.500000 | + | 0.866025i | −0.951057 | + | 0.309017i | −0.913545 | + | 0.406737i | 0.604528 | − | 0.128496i | |||||||||||||||||||||||||||||||||||||||||||||||||
536.2 | 0.251377 | − | 0.564602i | −0.207912 | − | 0.978148i | 0.413545 | + | 0.459289i | 0.587785 | + | 0.809017i | −0.604528 | − | 0.128496i | −0.500000 | + | 0.866025i | 0.951057 | − | 0.309017i | −0.913545 | + | 0.406737i | 0.604528 | − | 0.128496i | |||||||||||||||||||||||||||||||||||||||||||||||||
581.1 | −0.336408 | + | 1.58268i | −0.994522 | + | 0.104528i | −1.47815 | − | 0.658114i | −0.951057 | + | 0.309017i | 0.169131 | − | 1.60917i | −0.500000 | − | 0.866025i | 0.587785 | − | 0.809017i | 0.978148 | − | 0.207912i | −0.169131 | − | 1.60917i | |||||||||||||||||||||||||||||||||||||||||||||||||
581.2 | 0.336408 | − | 1.58268i | 0.994522 | − | 0.104528i | −1.47815 | − | 0.658114i | 0.951057 | − | 0.309017i | 0.169131 | − | 1.60917i | −0.500000 | − | 0.866025i | −0.587785 | + | 0.809017i | 0.978148 | − | 0.207912i | −0.169131 | − | 1.60917i | |||||||||||||||||||||||||||||||||||||||||||||||||
731.1 | −1.20243 | − | 1.08268i | 0.406737 | − | 0.913545i | 0.169131 | + | 1.60917i | −0.951057 | + | 0.309017i | −1.47815 | + | 0.658114i | −0.500000 | + | 0.866025i | 0.587785 | − | 0.809017i | −0.669131 | − | 0.743145i | 1.47815 | + | 0.658114i | |||||||||||||||||||||||||||||||||||||||||||||||||
731.2 | 1.20243 | + | 1.08268i | −0.406737 | + | 0.913545i | 0.169131 | + | 1.60917i | 0.951057 | − | 0.309017i | −1.47815 | + | 0.658114i | −0.500000 | + | 0.866025i | −0.587785 | + | 0.809017i | −0.669131 | − | 0.743145i | 1.47815 | + | 0.658114i | |||||||||||||||||||||||||||||||||||||||||||||||||
971.1 | −1.20243 | + | 1.08268i | 0.406737 | + | 0.913545i | 0.169131 | − | 1.60917i | −0.951057 | − | 0.309017i | −1.47815 | − | 0.658114i | −0.500000 | − | 0.866025i | 0.587785 | + | 0.809017i | −0.669131 | + | 0.743145i | 1.47815 | − | 0.658114i | |||||||||||||||||||||||||||||||||||||||||||||||||
971.2 | 1.20243 | − | 1.08268i | −0.406737 | − | 0.913545i | 0.169131 | − | 1.60917i | 0.951057 | + | 0.309017i | −1.47815 | − | 0.658114i | −0.500000 | − | 0.866025i | −0.587785 | − | 0.809017i | −0.669131 | + | 0.743145i | 1.47815 | − | 0.658114i | |||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
13.c | even | 3 | 1 | inner |
25.d | even | 5 | 1 | inner |
39.i | odd | 6 | 1 | inner |
75.j | odd | 10 | 1 | inner |
325.y | even | 15 | 1 | inner |
975.cj | odd | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 975.1.cj.a | ✓ | 16 |
3.b | odd | 2 | 1 | inner | 975.1.cj.a | ✓ | 16 |
13.c | even | 3 | 1 | inner | 975.1.cj.a | ✓ | 16 |
25.d | even | 5 | 1 | inner | 975.1.cj.a | ✓ | 16 |
39.i | odd | 6 | 1 | inner | 975.1.cj.a | ✓ | 16 |
75.j | odd | 10 | 1 | inner | 975.1.cj.a | ✓ | 16 |
325.y | even | 15 | 1 | inner | 975.1.cj.a | ✓ | 16 |
975.cj | odd | 30 | 1 | inner | 975.1.cj.a | ✓ | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
975.1.cj.a | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
975.1.cj.a | ✓ | 16 | 3.b | odd | 2 | 1 | inner |
975.1.cj.a | ✓ | 16 | 13.c | even | 3 | 1 | inner |
975.1.cj.a | ✓ | 16 | 25.d | even | 5 | 1 | inner |
975.1.cj.a | ✓ | 16 | 39.i | odd | 6 | 1 | inner |
975.1.cj.a | ✓ | 16 | 75.j | odd | 10 | 1 | inner |
975.1.cj.a | ✓ | 16 | 325.y | even | 15 | 1 | inner |
975.1.cj.a | ✓ | 16 | 975.cj | odd | 30 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace .