L(s) = 1 | + (−1.20 − 1.08i)2-s + (0.406 − 0.913i)3-s + (0.169 + 1.60i)4-s + (−0.951 + 0.309i)5-s + (−1.47 + 0.658i)6-s + (−0.5 + 0.866i)7-s + (0.587 − 0.809i)8-s + (−0.669 − 0.743i)9-s + (1.47 + 0.658i)10-s + (1.20 + 1.08i)11-s + (1.53 + 0.500i)12-s + (−0.309 + 0.951i)13-s + (1.53 − 0.499i)14-s + (−0.104 + 0.994i)15-s + (−0.406 − 0.913i)17-s + 1.61i·18-s + ⋯ |
L(s) = 1 | + (−1.20 − 1.08i)2-s + (0.406 − 0.913i)3-s + (0.169 + 1.60i)4-s + (−0.951 + 0.309i)5-s + (−1.47 + 0.658i)6-s + (−0.5 + 0.866i)7-s + (0.587 − 0.809i)8-s + (−0.669 − 0.743i)9-s + (1.47 + 0.658i)10-s + (1.20 + 1.08i)11-s + (1.53 + 0.500i)12-s + (−0.309 + 0.951i)13-s + (1.53 − 0.499i)14-s + (−0.104 + 0.994i)15-s + (−0.406 − 0.913i)17-s + 1.61i·18-s + ⋯ |
Λ(s)=(=(975s/2ΓC(s)L(s)(0.754+0.656i)Λ(1−s)
Λ(s)=(=(975s/2ΓC(s)L(s)(0.754+0.656i)Λ(1−s)
Degree: |
2 |
Conductor: |
975
= 3⋅52⋅13
|
Sign: |
0.754+0.656i
|
Analytic conductor: |
0.486588 |
Root analytic conductor: |
0.697558 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ975(731,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 975, ( :0), 0.754+0.656i)
|
Particular Values
L(21) |
≈ |
0.4846273340 |
L(21) |
≈ |
0.4846273340 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.406+0.913i)T |
| 5 | 1+(0.951−0.309i)T |
| 13 | 1+(0.309−0.951i)T |
good | 2 | 1+(1.20+1.08i)T+(0.104+0.994i)T2 |
| 7 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 11 | 1+(−1.20−1.08i)T+(0.104+0.994i)T2 |
| 17 | 1+(0.406+0.913i)T+(−0.669+0.743i)T2 |
| 19 | 1+(−0.913+0.406i)T+(0.669−0.743i)T2 |
| 23 | 1+(−0.743−0.669i)T+(0.104+0.994i)T2 |
| 29 | 1+(−0.669−0.743i)T2 |
| 31 | 1+(0.309+0.951i)T2 |
| 37 | 1+(−0.978+0.207i)T+(0.913−0.406i)T2 |
| 41 | 1+(−0.207−0.978i)T+(−0.913+0.406i)T2 |
| 43 | 1+(0.309−0.535i)T+(−0.5−0.866i)T2 |
| 47 | 1+(−0.363−0.5i)T+(−0.309+0.951i)T2 |
| 53 | 1+(−0.951−1.30i)T+(−0.309+0.951i)T2 |
| 59 | 1+(0.743−0.669i)T+(0.104−0.994i)T2 |
| 61 | 1+(0.978+0.207i)T+(0.913+0.406i)T2 |
| 67 | 1+(0.0646−0.614i)T+(−0.978−0.207i)T2 |
| 71 | 1+(0.978−0.207i)T2 |
| 73 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 79 | 1+(0.309−0.951i)T2 |
| 83 | 1+(−0.587+0.809i)T+(−0.309−0.951i)T2 |
| 89 | 1+(0.743+0.669i)T+(0.104+0.994i)T2 |
| 97 | 1+(−0.0646−0.614i)T+(−0.978+0.207i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.788834406496960241744628080176, −9.094449903310391492049129228089, −8.968899856717625176374250238828, −7.52917578029189169580675006564, −7.28691177758162888329487501445, −6.24717886957619948038785543022, −4.46891056564961789220597746543, −3.17515446073533095833048346122, −2.51370663415033563705692659390, −1.29358138860036969335712234091,
0.76847739084472296387364214975, 3.36003344122042134619202223480, 3.95243065873127905691047727228, 5.26402756143772350549754000219, 6.27705794567346312785233075984, 7.20977700351227510639472187847, 7.993319252070138997934276544916, 8.626219164981535591849168763781, 9.181921421859371707868764622201, 10.11742608075968704116609294289