L(s) = 1 | + (0.707 − 0.707i)3-s + 4-s + 1.41i·7-s − 1.00i·9-s + (0.707 − 0.707i)12-s + (−0.707 + 0.707i)13-s + 16-s + (−1 − i)19-s + (1.00 + 1.00i)21-s + (−0.707 − 0.707i)27-s + 1.41i·28-s + (−1 + i)31-s − 1.00i·36-s − 1.41i·37-s + 1.00i·39-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)3-s + 4-s + 1.41i·7-s − 1.00i·9-s + (0.707 − 0.707i)12-s + (−0.707 + 0.707i)13-s + 16-s + (−1 − i)19-s + (1.00 + 1.00i)21-s + (−0.707 − 0.707i)27-s + 1.41i·28-s + (−1 + i)31-s − 1.00i·36-s − 1.41i·37-s + 1.00i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.966 + 0.256i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.966 + 0.256i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.493721346\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.493721346\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (0.707 - 0.707i)T \) |
good | 2 | \( 1 - T^{2} \) |
| 7 | \( 1 - 1.41iT - T^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + (1 + i)T + iT^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (1 - i)T - iT^{2} \) |
| 37 | \( 1 + 1.41iT - T^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - 1.41T + T^{2} \) |
| 71 | \( 1 + iT^{2} \) |
| 73 | \( 1 + 1.41T + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 - 1.41T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11149143514414099900515386535, −8.976458039786263590569938632109, −8.709886446932961134742320135830, −7.51343590167377160791255212441, −6.87436911556631326359461900205, −6.13537524279281411465639013091, −5.11642301443041347037058423047, −3.53614776203931664106644489193, −2.40158454366151255387916609791, −1.98773887217548407872535815190,
1.77433405545193753888318051829, 3.00982193508563821022170026885, 3.84603696817627017961781432979, 4.81135546985067423365053977176, 6.02506133524096343639942600692, 7.07274232084790428169883857894, 7.77324619798820223701139872304, 8.354562475456836247071094615003, 9.821244410293337256236059670966, 10.14683842110656372928295187848